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 32 

Abstract 33 

Retrieval of ice cloud properties using IR measurements has a distinct advantage over the 34 

visible and near-IR techniques by providing consistent monitoring regardless of solar 35 

illumination conditions. Historically, the IR bands at 3.7, 6.7, 11.0, and 12.0 µm have been used 36 

to infer ice cloud parameters by various methods, but the reliable retrieval of ice cloud optical 37 

depth τ is limited to non-opaque cirrus with τ < 8. The Ice Cloud Optical Depth from Infrared 38 

using a Neural network (ICODIN) method is developed in this paper by training MODerate-39 

resolution Imaging Spectroradiometer (MODIS) radiances at 3.7, 6.7, 11.0, and 12.0 µm against 40 

CloudSat-estimated τ during the nighttime using 2 months of matched global data from 2007. An 41 

independent dataset consisting of comparable 2008 data was used to validate the ICODIN. One 42 

4-channel and three 3-channel versions of the ICODIN were tested. The training and validation 43 

results show that IR channels can be used to estimate ice cloud τ up to ~70 or so with 44 

correlations above 78% and 69% for all clouds and only opaque ice clouds, respectively. The 45 

corresponding RMS differences relative to CloudSat are ~100 and ~72%. The 3.7-µm channel 46 

appears to be most sensitive to optical depth changes but is constrained by poor precision at low 47 

temperatures. A method for estimating total optical depth is explored for estimation of cloud 48 

water path in the future. Factors affecting the uncertainties and potential improvements are 49 

discussed. The method can ultimately improve cloud property monitoring over the entire diurnal 50 

cycle. 51 

  52 
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1.  Introduction 53 
 54 
Clouds comprise a key component of weather and climate. They alter the flow of solar and 55 

infrared radiation through the atmosphere between the surface and space, they serve as the 56 

source of precipitation, and their disappearance or formation affects the local sensible and latent 57 

heat balance. Because cloud processes occur throughout the diurnal cycle, it is critical for 58 

weather and climate models to accurately account for clouds both day and night. Numerical 59 

models require observations to develop understanding of the processes and to validate the results 60 

(e.g., Fridlind et al. [2012]). Additionally, direct assimilation of cloud properties, such as cloud 61 

optical depth [Norris and da Silva, 2015] or water path (Jones et al., 2013, 2015a; Chen et al., 62 

2015], in weather models can demonstrably improve forecasts of critical parameters. The optimal 63 

source of cloud parameters for these weather and climate applications is satellite imager data, 64 

which provide contiguous spatial coverage and in the case of geostationary satellites, relatively 65 

continuous temporal coverage. Remote sensing of cloud properties from imager data has 66 

developed dramatically since the beginning of the satellite era and today provides a wealth of 67 

information about clouds in near-real time from a variety of satellites (e.g., Minnis et al. [2008]). 68 

Yet, there remain significant limitations on what can be retrieved using current algorithms, thus 69 

restricting the utility of the satellite data for providing critical cloud property information for 70 

weather and climate applications. 71 

A full suite of cloud parameters can be determined from a combination of solar and infared 72 

channels on modern research and operational satellite imagers (e.g., King et al. [2003], 73 

Heidinger et al. [2003], Minnis et al. [2011b]). These include cloud fraction, top height and 74 

temperature, visible (~0.65 µm) optical depth τ, and effectives, particle radius re, among other 75 

variables. The cloud water path (CWP) can be derived, with some assumption from the product 76 
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of τ and re. At night, using only a limited number of infrared channels, it is possible to retrieve 77 

the same suite of variables, except that values of τ or re cannot be directly determined unless τ < 78 

5 or so (Szejwach, 1982; Inoue, 1985; Liou et al., 1990; Lin and Coakley, 1993; Ou et al., 1993; 79 

Huang et al., 2004; Yue and Liou, 2009; Minnis et al., 2011b]. Without the solar reflectance 80 

channels, the retrievals are limited to semi-transparent clouds only. The retrieval algorithms can 81 

decide if a cloud is opaque at infrared wavelengths (e.g., Hong et al. [2010a]), but they cannot 82 

determine whether the cloud optical depth is 8 or 100, for example, due to a lack . Thus, the use 83 

of those cloud properties and CWP for weather and climate applications is confined to the 84 

daytime, a restriction that could compromise the utility of the data. For example, a short-term 85 

forecast of convective storms based on assimilated satellite-retrieved values of CWP could be 86 

significantly degraded at night if there is no reasonable estimate of CWP in the locations of 87 

important convective clouds and the near-storm environment (e.g., Jones et al. [2015b]). 88 

The launch of the Suomi National Polar-orbiting Partnership (SNPP) satellite with the 89 

Visible Infrared Imaging Radiometer Suite (VIIRS) has made it possible to retrieve opaque cloud 90 

optical depth using a Day/Night band (DNB) that measures reflected moonlight [Walther et al., 91 

2014]. This exciting advance in cloud remote sensing is tempered by the complex nature of 92 

sources contributing to the light received by the sensor, which includes auroras, city lights, and 93 

fires [Hillger et al., 2013]--making the approach most useful over the global oceans at low to 94 

mid-latitudes. Additionally, the intensity of the moonlight, though predictable [Miller et al., 95 

2009], is highly variable and is near zero for roughly half of the lunar cycle as viewed from the 96 

SNPP orbit. Thus, despite its great potential, the DNB channel cannot be used to continuously 97 

monitor the optical properties of optically thick clouds at night. A different approach is needed to 98 

provide a more comprehensive solution. 99 
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Minnis et al. [2012] demonstrated that brightness temperatures (BT) and brightness 100 

temperature differences (BTD) at certain infrared wavelengths are sensitive to variations in τ and 101 

re for values of τ up to 20 and possibly even to higher values of ~100. These wavelengths, 3.7, 102 

6.7, 8.5, 10.8, and 12.0 µm, are similar to those among the channels onboard most modern 103 

satellite imagers such as the MODerate-resolution Imaging Spectroradiometer (MODIS). A hint 104 

of the sensitivity and correlation of the data is evident in Figure 1, which shows the ice water 105 

path (IWP) and BTD between the 6.7 and 11-µm channels determined from the eastern 106 

Geostationary Operational Environmental Satellite (GOES) imager data over the southern Great 107 

Plains during a daytime hour. The IWP was retrieved with the method of Minnis et al. [2011b]. 108 

There is clearly some relationship between the two parameters, but it does not appear to be a 109 

singular function. Minnis et al. [2012] found a dependence of BTD(6.7-11) on τ for a deep 110 

convective cloud case, but because the radiance sensitivities to τ are quite small, especially for τ 111 

> 20, the relationship can easily be lost in the measurement noise and model uncertainties. Thus, 112 

a direct approach based on modeling the radiance fields is impractical for retrieving nocturnal 113 

opaque ice cloud properties.  114 

One method that skirts the need for a physical retrieval is the neural network. Kox et al. 115 

[2014] developed a neural network method to determine τ and cloud top height Zt for non-116 

opaque ice clouds using seven infrared channels as input and τ from the Cloud-Aerosol Lidar 117 

with Orthogonal Polarization (CALIOP) on the Cloud-Aerosol Lidar and Infrared Pathfinder 118 

Satellite Observation (CALIPSO; see Winker et al. [2007]) satellite as output. That algorithm, 119 

applicable only to ice clouds having τ < 2.5, proved quite successful at reproducing the 120 

CALIOP-based retrievals of τ and Zt from passive infrared data. In earlier preliminary studies 121 

using MODIS data for input and retrievals based on CALIOP and CloudSat [Stephens et al., 122 
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2002] Cloud Profiling Radar (CPR; Im et al. [2005]) data for output, Hong et al. [2010b, 2012] 123 

found that a neural network approach might provide a reasonable estimate of τ for opaque ice 124 

clouds. This method, however, has not yet been fully documented and analyzed in detail. 125 

Nevertheless, it is clear that the neural network technique could prove valuable in overcoming 126 

the apparently inherent limitations of using infrared data for cloud retrievals.  127 

To address the need for obtaining reliable cloud optical depth information at night, this paper 128 

expands on the initial work of Hong et al. [2010b, 2012] and Minnis et al. [2010, 2011a] to 129 

document and further develop the use of a neural network to estimate τ for opaque ice clouds 130 

using multispectral infrared brightness temperatures and their differences. Here, the target output 131 

values consist of ice cloud optical depths from CPR data. They are available both day and night 132 

and therefore serve as optimal reference sets for training the neural network. Multispectral 133 

infrared data from MODIS are used as input data to train the neural network to estimate τ. 134 

Because the channel complement differs from imager to imager, the technique, referred to as the 135 

Ice Cloud Optical Depth from Infrared using a Neural network (ICODIN), is tested using 136 

different combinations of channels centered near 3.7, 6.7, 10.8, and 12.0 µm. The method is 137 

assessed using independent CPR data as well as daytime retrievals using the MODIS visible 138 

channel and nighttime retrievals using the DNB from VIIRS. The potential uses and pitfalls of 139 

the ICODIN are then discussed.    140 

2. Data 141 
 142 
The ICODIN is developed to complement nocturnal retrievals that retrieve cloud properties 143 

for non-opaque clouds. The input data consist of multispectral radiances from passive imaging 144 

radiomaeters that are assumed to be associated with optically thick, .e., opaque, ice clouds. The 145 

output data are optical depths derived from the active sensor.   146 
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2.1. Passive Satellite Data 147 

Nocturnal brightness temperatures from 1-km Aqua MODIS channels 20 (3.7 µm), 27 (6.7 148 

µm), 31 (11.0 µm), and 32 (12.0 µm) from March and October of 2007 and 2008 are used as the 149 

input for the ICODIN. The brightness temperatures are included among the results of an 150 

intermediate step in the processing of the A-train CALIPSO, CloudSat, CERES, and MODIS 151 

merged product (C3M, see Kato et al. [2010, 2011]). CERES is the Clouds and Earth’s Radiant 152 

Energy System [Wielicki et al. 1998] project. The C3M processing matches up to three 153 

CALIPSO footprints with each MODIS pixel along its ground track. It then assigns the nearest 154 

CloudSat footprint to each of those MODIS pixels. The cloud properties from MODIS, retrieved 155 

using the algorithms of Minnis et al. [2011b], are included with the matched CALIPSO and 156 

CloudSat products along with radiances from 18 MODIS channels. Those matched data, 157 

constituting part of the C3M intermediate product, are used here. The CloudSat ground track is 158 

parallel to Aqua and is viewed by MODIS at viewing zenith angles (VZA) up to 18°. No 159 

corrections are made for parallax effects because of the small differences in VZA. Night is 160 

defined here as the solar elevation being at least 3° below the horizon, that is, at solar zenith 161 

angles exceeding 93°. 162 

One Aqua MODIS image granule from July 2012 is used for comparison with matched SNPP 163 

VIIRS DNB retrievals. Another Aqua MODIS granule from 2007 used for a daytime comparison 164 

with the ICODIN output.  165 

The standard CERES method for retrieving cloud properties at night is the Shortwave-166 

infrared Infrared Split window Technique (SIST; Minnis et al. [2011b]). The SIST uses BT(3.7), 167 

BT(11), and BT(12) to retrieve Tc, τ, and re, where Tc is the effective radiating temperature of the 168 

cloud (typically corresponding to an optical depth of ~1 below the geometric cloud top for 169 
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optically thick clouds). The SIST attempts retrievals up to τ > 16 or even greater, in some cases, 170 

but often, it classifies the cloud as opaque and assigns default values of 8, 16, or 32 to clouds 171 

deemed as such. The SIST results exemplify the state of the art for estimating τ at night.  172 

Because MODIS includes an 8.5-µm channel, a different method that leverages the 8.5-µm 173 

radiance is used to classify a pixel as opaque ice for purposes of developing the initial version of 174 

the ICODIN. In particular, a procedure that combines the bispectral technique of Baum et al. 175 

[2000] and the trispectral technique of Choi et al. [2007] is used to identify ice clouds. The 176 

bispectral technique determines ice phase by satisfying either of two tests: BT(8.5) ≤ 238 K or 177 

BTD(8.5–11) ≥ 0.5 K [Baum et al. 2000; Menzel et al. 2006], while the trispectral technique 178 

determines ice phase by satisfying one of three tests: BT(11) ≤ 238 K, BTD(11-12) ≥ 4.5 K, or 179 

BT(6.7) ≤ 234 K. Once classified as an ice cloud, the technique of Hong et al. [2010a] is used to 180 

classify the cloud as being opaque (τ > 8) or semitransparent. These three methods are 181 

collectively denoted here as the Baum/Choi/Hong (BCH) technique. 182 

Even though the SIST or the BCH determines a pixel’s cloud as being opaque ice, CloudSat 183 

could have a different classification. The CPR-based τ estimate could be less than 8 and/or the 184 

phase could be entirely liquid for the pixel. In a comparison with the CALIOP phase 185 

classification for single-layered clouds, it was found that the SIST agreed with CALIPSO 94% of 186 

the time over snow and ice-free areas and 88% of the time over snow and ice-covered areas 187 

[NASA, 2015]. Compared with CloudSat and CALIPSO data, the BCH correctly identifies ~81% 188 

of the sampled upper tropospheric clouds as either opaque or semitransparent (Hong et al. 189 

[2010a]). While a portion of the misclassified pixels here are likely to be optically thin clouds, 190 

the phase of some opaque clouds will be misclassified in the supercooled temperature range. For 191 

those BCH retrievals classified as opaque ice, which are actually thin ice according to the CPR 192 
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retrieval, the unconstrained training output may force the revised retrieval to yield a non-opaque 193 

value of τ. The misidentification of a liquid water cloud as ice will also result in some errors in 194 

the results. 195 

2.2. Active Satellite Data 196 

A large sample of data representative of the input and output parameters in the retrieval 197 

process is needed to train the neural network method. The primary output parameter here is ice 198 

cloud optical depth. Neither CALIPSO nor CloudSat alone is sufficient for providing a complete 199 

picture of opaque cloud vertical structure. The CPR tends to miss thin clouds composed of small 200 

cloud particles (the minimum detection is −30 dBZ [Stephens et al., 2008]) particularly those at 201 

the tops of opaque ice clouds. The CALIOP signal detects the ice crystals at cloud top missed by 202 

the CPR, but is completely attenuated by optically thick clouds (τ > 3) [Kato et al., 2010]. 203 

Therefore, the combination of CloudSat and CALIPSO data would provide the most complete 204 

cloud vertical profile. However, since the CALIOP typically measures an additional optical 205 

depth of only ~0.3 or less above the tops of opaque ice clouds determined from the CPR (e.g., 206 

McGill et al. [2004]) and the minimum τ of 8 is the target here, then the exclusion of the extra τ 207 

from CALIOP adds a potential underestimate of the total ice τ value of 1-12% depending on the 208 

total depth of the cloud. However, much larger relative biases could occur for clouds with τ < 8. 209 

In those instances, CloudSat could underestimate the optical depth by 50% for τ = 2. 210 

Nevertheless, given potential biases of up to 25% in the CloudSat retrievals [Austin et al. 2009], 211 

the absence of the CALIOP contribution to the total ice optical depth should have minimal 212 

impact on the estimates of truly opaque ice cloud τ values. Thus, the C3M CloudSat products are 213 

used alone to compute τ. The profiles of IWC and re in C3M are from the CloudSat L1B Release 214 

4 2B-CWC-RO product [Austin et al. 2009], which includes three types of profiles. This study 215 
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uses the profile type which assumes that all hydrometeors above the altitude corresponding to -216 

20°C are ice phase and below the level corresponding to 0°C are liquid. Between the 0° and -217 

20°C levels, the proportion of ice increases linearly from 0 to 100% with decreasing temperature. 218 

To obtain the optical thickness of opaque ice clouds, the vertical profiles of ice water content 219 

(IWC) that are derived from CloudSat are used to estimate the total optical thickness of ice 220 

clouds using 221 

τ = Σ

€ 

τ =
3
4
IWC
reρ

QeΔz,        (1) 222 

where IWC and re are from CloudSat, ρ is ice particle density (0.917 g cm-3), Δz is the vertical 223 

thickness of the ice cloud, and Qe, the extinction coefficient for ice clouds, is given a value of 2 224 

in this study. 225 

The C3M global matched MODIS and CloudSat data from March and October 2007 are used 226 

as the training set. The March and October 2008 global matched data comprise the independent 227 

validation dataset. 228 

 229 

3. Methodology 230 
 231 
3.1. Neural Network Retrievals 232 
 233 
Different from the direct retrieval of a parameter value using a representative physical model, 234 

neural network algorithms aim to identify the relationship between input and output variables by 235 

learning from a set of observed or simulated data [Karayiannis and Venetsanopoulos, 1993]. A 236 

neural network is a computer model composed of individual processing elements that are called 237 

neurons. The network can comprise multiple layers of neurons interconnected with other neurons 238 

in different layers that are referred to as the input, hidden, and output layers. The inputs are 239 
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processed by a weighted summation function to produce a sum that is passed to a transfer 240 

function. The weights are used to determine the level of influence a given input has on the output 241 

layer. The output of the transfer function is the output of the neurons. A neural network 242 

constructs a nonlinear numerical model of a physical process in terms of network parameters that 243 

are trained with input and output parameters to determine the weights for any given connection. 244 

Figure 2 shows the architectural graph of a three-layer perceptron with an input layer, a 245 

hidden layer, and an output layer. The neurons of the input layer are represented by vector P(p1, 246 

p2,…pm-1, pm), where m is the number of the input neurons or parameters. In the current study, 247 

m=10 is used for the neural network training. The 10 neurons of P are BT(3.7), BT(6.7), BT(11), 248 

and BT(12), BTD(3.7-6.7), BTD(3.7-11), BTD(6.7-11), BTD(11-12), latitude, and longitude. 249 

The number of neurons in the hidden layer is determined during neural network architecture 250 

design and adjusted to produce best neural network performance. Here, n=50 neurons are used in 251 

the hidden layer for training. The number of neurons in the output layer is the number of output 252 

parameters in the retrieval. In this case, the opaque ice cloud optical thickness τ, as indicated in 253 

Figure 1, is the lone output. The hidden layer weighting vector, W, is given in the form of  254 

  

€ 

w1,1 w1,2 … w1,n−1 w1,n
w2,1 w2,2 ! w2,n−1 w2,n

" " # " "
wm−1,1 wm−1,2 … wm−1,n−1 wm−1,n

wm,1 wm,2 ! wm,n−1 wm,n

# 

$ 

% 
% 
% 
% 
% % 

& 

' 

( 
( 
( 
( 
( ( 

, 255 

where wm,n is the weight between input neuron, pm, and hidden neuron, n. The output layer 256 

weighting vector, V(v1, v2, …, vn-1, vn) comprises the weights between the hidden neurons and the 257 

output neuron. The vector, B(b1, b2, …, bn-1, bn) is the bias in the hidden layer and b is the bias in 258 

the output layer. 259 
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The network training function of Bayesian regulation backpropagation is used for the three-260 

layer neural network. This training function updates the weight and bias values according to 261 

Levenberg-Marquardt optimization. It minimizes a combination of squared errors and weights, 262 

and then determines the correct combination so as to produce a network that generalizes well. 263 

During the training, different transfer functions between the input and hidden layers and between 264 

the hidden and output layers were investigated. It was found through initial testing that using a 265 

log-sigmoid transfer function s(x) to propagate to the hidden layer and a hyperbolic tangent 266 

sigmoid transfer function t(x) to propagate to the output layer produces the optimal network 267 

performance. The log-sigmoid and the hyperbolic tangent sigmoid transfer functions, 268 

respectively, are 269 

s(x) = 1
1+ exp(−x)

,       (2) 270 

and 271 

€ 

t(x) =
2

1+ exp(−2x)
−1.       (3) 272 

During initial trials using this approach, both re and τ were selected for output. However, no 273 

skill was found for estimating re, so as noted above, the analysis seeks only one output 274 

parameter, τ. 275 

The training was performed for all MODIS pixels classified as opaque ice by the BCH 276 

method and having BT(11) < 260 K, which is warmer than the center of the supercooled 277 

temperature range but substantially colder than the freezing level. Temperatures colder than 260 278 

K are often associated with thick ice clouds such as cirrus anvils or deep convective elements 279 

(e.g., Tian et al. [2004]). Additionally, the training was performed separately for pixels having 280 

BT(11) < 250, 240, and 235K, to determine if the skill could be improved by additional 281 
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classification. This approach implicitly assumes that no optically thick ice clouds occur with top 282 

temperatures greater than 260 K. 283 

The ICODIN was trained using 4 different combinations of channels: a 4-channel method 284 

using BT(3.7), BT(6.7), BT(11), and BT(12) and relevant BTDs denoted as ICODIN4 and three 285 

3-channel methods. The ICODIN3a, which uses BT(6.7), BT(11), BT(12), BTD(6.7-11), and 286 

BTD(11-12) is applicable day and night, while ICODIN3b, which uses BT(3.7), BT(11), BT(12), 287 

BTD(3.7-11), and BTD(11-12), can be used on sensors lacking a 6.7-µm channel. A third night-288 

only version, ICODIN3c uses BT(3.7), BT(6.7), BT(11), BTD(3.7-6.7), BTD(3.7-11), and 289 

BTD(6.7-11) and could be used for sensors lacking a 12-µm channel. 290 

During the training, out of the total about 1.6 million collocated data for 2007 meeting the 291 

criteria listed earlier, one out of every three pixels was selected for the training process. Of those 292 

selected pixels, 60% were selected randomly to comprise the training set, which was employed 293 

to compute the gradient and update the network weights and biases. Of the remainder, 20% were 294 

extracted for validation and 20% were used for testing. Computer memory limitations 295 

necessitated this downsizing of the dataset. The independent 2008 dataset included ~1.7 million 296 

pixels, which is roughly 34% of the total number of C3M pixels for the time period. After 297 

training, the ICODIN method was applied to all of the 2007 and 2008 data.  298 

3.2 Passive retrievals  299 

In addition to the raw MODIS BT and BTD data used in the ICODIN, the SIST was also run 300 

for comparison. The SIST classified ~1.1 million pixels as opaque ice (τ > 8) having BT(11) < 301 

260 K, or ~22% of all pixels. Of those SIST opaque ice pixels, the SIST and BCH shared 59%, 302 

leaving 0.45 million pixels classified as opaque ice by SIST and not by BCH. Conversely, the 303 

BCH classified 0.65 million pixels as opaque ice that were not similarly identified by the SIST. 304 
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Cloud properties were derived from one 2007 daytime MODIS granule using the Visible 305 

Infrared Shortwave-infrared Split-window Technique (VISST; see Minnis et al. [2011b]). The 306 

SIST was used for selected granules to evaluate the performance of the ICODIN at night.  307 

A nighttime SNPP VIIRS image granule was also analyzed using the VISST, but with the 308 

DNB substituting for the visible (0.65 µm) channel. It was assumed that the cloud reflectance at 309 

0.65 µm is the same for the DNB bandwidth so that the daytime reflectance model used by the 310 

VISST [Yang et al. 2008] could be used at night. The DNB channel is much broader (0.5 – 0.9 311 

µm) than the MODIS visible channel (0.615-0.678) so that some error will occur based on this 312 

assumption. The incoming moonlight intensity was computed using a model described by Miller 313 

at al. [2009]. Using those algorithms for this particular case yielded optical depths exceeding 135 314 

for most of the convective clouds. As this is unlikely, based on daytime observations, the DNB 315 

calibration gain was adjusted such that the brightest pixel yielded τ = 150. The result of this 316 

adjustment was a distribution of optical depths comparable to those seen during daytime. 317 

4.  Results 318 

Results are presented for all versions of the ICODIN. 319 

4.1  4-channel Neural Network (ICODIN4) Training and Validation 320 

To determine the optimal set of temperature thresholds for using ICODIN, histograms of τ 321 

from CloudSat and the four ICODIN4 training and validation runs were created and plotted as 322 

shown in Figure 3. CloudSat results are shown as bold lines, while the various ICODIN4 results 323 

are shown as thin lines and the various temperature thresholds used are distinguished by color. 324 

Frequencies for τ < 50 are shown Figures 3a and 3b for BT(11) < 260 and 235 K and for BT(11) 325 

< 250 and 240 K, respectively. Similarly, Figures 3c and 3d show the corresponding results for 326 

optical depths between 30 and 150 on a different scale. The ICODIN and CloudSat distributions 327 
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in Figure 3 are close, but not identical. The greatest divergences appear for τ < 10 for BT(11) < 328 

260 and 250 K, for τ < 20 for BT(11) < 240K, and between τ = 10 and 20 for BT(11) < 235 K. 329 

All of the curves drop off exponentially from τ < 2. It is clear that many of “opaque” pixels as 330 

determined by the imager retrievals contain ice clouds having τ < 8. Overall, 68% of the clouds 331 

identified as opaque ice by the BCH method were determined to be semitransparent (τ < 8) by 332 

CloudSat. Similar results (48%) were found for the SIST method. This apparent misidentification 333 

by the BCH and SIST probably involves impacts of phase misclassification and optical depth 334 

errors in the imager retrievals, uncertainties in the CloudSat retrieval and assumed phase, and the 335 

occurrence of thin ice clouds over water clouds with only small or no vertical separation between 336 

the layers. That last condition would likely result in a false determination of opaque ice by one or 337 

both of the passive methods.  338 

Here, it is assumed that an optimal approach is that which would produce the same 339 

distributions of τ as observed by CloudSat. To determine the temperature threshold that yields 340 

the optimal statistical representation of the CloudSat ice cloud optical depths τCS, the ratio, 341 

N(τCN4) / N(τCS), was plotted (Figure 4) for both the 2007 and 2008 results, where τCN4 is the 342 

ICODIN4 optical depth and N is the number of samples in a given optical depth bin. The ratios 343 

for τ < 50 and τ > 50 for 2007 are plotted in Figures 4a and 4b, respectively. Their 2008 344 

counterparts are shown in Figures 4c and 4d. For both 2007 and 2008, the ratio is closest to 1.0 345 

for BT(11) < 260 K for τ between 8 and 50. For τ < 8, all thresholds produce large errors, except 346 

for BT(11) < 235 K during 2007. For τ > 50 (right panels), the ratio drops almost linearly from 347 

near unity to near zero at τ = 150, indicating much reduced skill for retrieving values of τ > 60 348 

using ICODIN4. The black curve is mostly on top for 2007 (Figure 4b), while the red curve 349 

appears to yield more for τ > 120 or so for 2008 (Figure 4d). Considering the complexity in 350 
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application and the evident uncertainties for each threshold, it was decided to use the training set 351 

for BT(11) < 260 K, except when the set for BT(11) < 235 K produces a value of τ > 110. The 352 

latter set is used to maximize the retrieval of the larger optical depths. Although the ratios were 353 

near unity for BT(11) < 235 K and τCS < 8, including that criterion in the method made no 354 

difference in the overall agreement with τCS. Thus, the combination of the two training sets noted 355 

above constitutes the method used hereafter for all forms of the ICODIN. 356 

The final training results using the four channels are shown as a density scatterplot in Figure 357 

5a, where the bin size is one optical depth unit. Additionally, the results of applying the trained 358 

neural network to the 2008 collocated C3M data are shown in Figure 5b. They constitute an 359 

independent validation, providing a measure of the robustness of the neural network approach. 360 

The goal of this study is to estimate τ for opaque ice clouds. It is clear in Figure 5 that 361 

semitransparent clouds are more common in this dataset despite the best efforts of the BCH to 362 

identify opaque clouds. Nevertheless, the ICODIN tends to reclassify thos “thin” opaque clouds. 363 

Both the 2007 training and independent 2008 results have correlation coefficients, R, exceeding 364 

0.77 between the τCN4 and τCS values. The bias for the training results is only -0.8%, while the 365 

2008 bias is -1.2%. The corresponding standard deviations of the differences (SDD) are 99 and 366 

105%. The accuracy of the ICODIN4 applied to an independent dataset is only slightly degraded 367 

and, therefore, should be generally applicable to all MODIS data, at least, for those observations 368 

near nadir. 369 

The sample densities of scatterplots in Figure 5 do not coincide with the line of agreement. 370 

As expected from the results in Figure 4, the ICODIN4 results at the low end (τ < 15) are mostly 371 

greater than the CPR values, while the opposite occurs at the high end. There, relatively few 372 

ICODIN4 values exceed 70, however, there are τCN4 values as large as 100, but fewer than 5 (not 373 
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shown) in a given optical depth pair. Thus, the ICODIN4 tends to dampen the range, but still 374 

yields a relatively high correlation. To determine if the results are imbalanced, the mean values 375 

of τCN4 and τCS were computed for every 2.5 ICODIN4 optical depth intervals between 0 and 50 376 

and for every 5 optical depth intervals for τCN4 > 50. Figure 6 shows the binned averages 377 

connected by a line. The means tend to follow the line of agreement up to τCN4 ~ 70 and then 378 

diverge with the 2007 and 2008 data going above and below the line, respectively. The 379 

divergence suggests that either the sample set is too small for the larger optical depths or the 380 

information content is diminished, or both. Given the trends in Figures 4b and 4d, it is likely that 381 

the information content is greatly diminished as τ increases beyond 50. However, these results 382 

show that, on average, for any given value of τCS < 70, τCN4 is unbiased relative to τCS. 383 

The damping effect of the neural network on the extreme values, suggested by Figure 4, can 384 

also be seen in regional averages. Figure 7 plots the average nighttime opaque ice cloud optical 385 

depth for 2° latitude by 2° longitude regions from the CPR and from MODIS using ICODIN4. 386 

While the patterns are very similar, the CloudSat retrievals have more dark blue (τ < 5) areas, 387 

especially in higher latitudes and more red (τ > 50) regions, particularly in the tropics. The 388 

ICODIN4 means tend to be smoother than their CPR counterparts. The regional averages are 389 

compared in a scatterplot (Figure 8), which shows that, overall, the means are unbiased and the 390 

mean regional difference could be as large as 65% at the one standard deviation level. It is clear 391 

from the plot that for many regions, the ICODIN4 overestimates the mean τ by 1-2 for τ < 3 and 392 

underestimates the mean for τ > 15 or so.  393 

Figure 9 shows an example of the ICODIN4 applied to MODIS data along the CloudSat 394 

ground track for a MODIS granule taken over the tropical eastern Pacific at 0830 UTC 25 July 395 

2008. The track, shown as a line over the multispectral (Figure 9a) and BT(11) (Figure 9b) 396 
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images, passes through areas of deep convection separated by low clouds. The line is black 397 

except over opaque ice clouds where it is red. The CPR reflectivity image for the ground track 398 

segment between 8°N and 14°N (Figure 9c) shows cloud tops reaching 15 km and a melting 399 

layer near 5 km with two deep cells around 10°N. The corresponding optical depths retrieved 400 

from the CPR and MODIS are plotted as blue and red points, respectively, in Figure 9d. Values 401 

of τCN4 and τCS track well for much of the segment, but τCN4 tends to deviate at the extremes, 402 

underestimating the highest values and overestimating many of the lower values, as discussed 403 

above. Nevertheless, the results are quite encouraging and provide more relevant information 404 

about opaque ice clouds than any default values. 405 

This can be seen clearly in Figure 10, which compares the results of the ICODIN4 and the 406 

SIST applied to the entire MODIS granule in Figure 9. Despite the lack of training at off-nadir 407 

VZAs, the ICODIN4 (Figure 10a) produces a very reasonable distribution of τ values compared 408 

to the images in Figure 9a, b. Few, if any pixels in the northwestern sector have τCN4 > 100, 409 

while a large area of τCN4 > 100 is evident for the massive convective system near 6°N, 87°W, 410 

which is dominated by pixels having BT(11) < 200 K. These distributions can be contrasted with 411 

the SIST results (Figure 10c) from the CERES Edition 4 analyses [Minnis et al. 2010] that have 412 

values of 32 for most of the colder clouds. If the SIST is used to select the opaque clouds (Figure 413 

10b), fewer areas are selected as opaque clouds but some different areas (e.g., near 4°N, 92°W) 414 

are classified as opaque by the SIST. Most of the clouds that appear to be optically thick visually 415 

are selected by both methods.  416 

4.2. 3-channel Neural Network (ICODIN3a, b, c) Training and Validation 417 

The ICODIN3a (no 3.7-µm channel), the ICODIN3b (no 6.7-µm channel), and ICODIN3c 418 

(no 12-µm channel) were trained and validated using the same datasets employed for ICODIN4. 419 
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The resulting statistics are shown in Table 1 along with those from the ICODIN4 analysis. A 420 

total of 537,320 and 1,732, 361 matched points were used in ICODIN4 for 2007 and 2008, 421 

respectively. The greater number of points in 2008 was possible because the training (2007) was 422 

limited by computer memory and the application of the trained algorithm (2008) is not 423 

constrained to keep all data in memory. Slightly different numbers of pixels were identified as 424 

valid for the ICODIN3 analyses, thus different mean optical depth values were obtained for each 425 

case. Overall, ICODIN4 produces the best statistical comparison with τCS, but the results from 426 

the various 3-channel methods are not greatly different from the ICODIN4 statistics. The worst 427 

performer is ICODIN3a, which lacks the 3.7-µm channel. Its correlation is lowest for the 428 

independent retrievals and the SDD values are greatest overall. Increases in uncertainty occur 429 

across the board for the 2008 data.  430 

Figure 11 shows the optical depths retrieved using the ICODIN3a, ICODIN3b, and 431 

ICODIN3c for the image analyzed in Figure 10. All three methods produce τ patterns similar to 432 

those generated by ICODIN4 (Figure 10a), but each finds more extremely high (red) values for 433 

the large system on the right than ICODIN4. ICODIN3a (Figure 11b) yields more low values 434 

(black) of τCN3a on the center right and fewer values around 35 or so (dark blue). The ICODIN3b 435 

(Figure 11c) more closely resembles the ICODIN4 results overall, but tends to run high. 436 

ICODIN3c (Figure 11d) is also more like ICODIN4 than ICODIN3b, but has fewer extremely 437 

high values overall.  438 

 The differences and similarities between the 3- and 4-channel methods are quantified in 439 

Figure 12, which shows scatterplots made from the data in Figures 10a and 11. Optical depths 440 

from ICODIN3a and ICODIN4 (Figure 12a) are highly correlated (R = 0.91), but the scatter is 441 

quite high with SDD = 9.55, a value larger than that between τCS and τCN4 (Table 1). The absence 442 
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of the water vapor channel in ICODIN3b does not seem to make a great amount of difference 443 

compared to ICODIN4 as R = 0.97 and SDD = 5.53 (Figure 12b). Furthermore, the values at the 444 

high end are mostly greater than those from ICODIN4, a tendency that may counteract the 445 

shortfall in extremely high values seen in Figure 4. Unlike the nearly linear distribution of points 446 

in Figure 12b, the results of ICODN3c (Figure 12c) yield a clearly non-linear relationship with 447 

an inflection around τCN4 ~ 70 and an overestimating bulge around τCS ~ 25. Its SDD value is 448 

10% greater than its ICODIN3b counterpart. Although the results in Table 1 all give comparable 449 

optical depths relative to CloudSat, Figure 12 indicates that the absence of the 6.7-µm channel 450 

has the least impact on results. Or, since these data are from the entire image with VZAs up to 451 

67°, they could indicate that the 6.7-µm (3.7-µm) channel is most (least) sensitive to VZA 452 

effects.  453 

 454 

5. Discussion 455 

 The ICODIN approach has skill at retrieving the ice cloud optical depth, but appears to have 456 

relatively large random uncertainties. Moreover, it only retrieves the ice cloud optical depth and 457 

makes no attempt to retrieve the total optical depth, which would include any liquid water in the 458 

column. The uncertainties and the impact of ignoring the liquid water are discussed below. It is 459 

beyond the scope of this paper to provide a complete error analysis. Rather, the purpose is to 460 

demonstrate the potential of the ICODIN approach and illuminate some of the factors that should 461 

be considered when further developing and applying it. 462 

 5.1 Uncertainties 463 

 As seen in the analysis above, the retrieved ice optical depths are relatively unbiased, on 464 

average, but the RMS errors (~SDD) are on the order of 100%. These errors are likely due to 465 
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limitations in the ICODIN retrievals and to uncertainties in the CloudSat retrievals. As discussed 466 

in Minnis et al. [2012], the sensitivity of the ICODIN channels to changes in optical depth 467 

beyond the infrared opaque “limit” is likely due to subtle changes in the cloud top structure and, 468 

especially for 6.7 µm, the water vapor in the top levels of the cloud. The relationships among the 469 

vertical structure, the ice optical depth, and the individual channel responses are probably not 470 

unique, which would account for some of the scatter and the decreasing ability to detect a 471 

dependence on τ at values greater than ~60. For example, the vertical structure at cloud top could 472 

be the same for a cloud having τ = 70 or 100 in some cases, but not in others. Because the 473 

development of very thick ice clouds is mostly a deep convective phenomenon, τ is also likely to 474 

be affected by the vertical profiles of temperature and humidity, the surface temperature, and the 475 

stability. In this study, those factors, as well as surface type, were not considered.  476 

 At the bottom of the temperature range (BT < 220 K), values of BT(3.7) change by several K 477 

/ count, drastically reducing the precision of the observation. For extremely cold clouds having 478 

very large optical depths, the 3.7-µm channel yields very noisy (and hence, uncertain) 479 

temperatures that can be either larger or smaller than their 11-µm counterparts. This is illustrated 480 

in Figure 13, which shows BT(11) and BTD(3.7-11) for a MODIS image of a convective system 481 

over the northeast Pacific at 0925 UTC, 5 July 2012. The BTD (Figure 13b) peaks above 30 K 482 

for BT(11) ~ 245 K (Figure 13a). It drops with decreasing BT(11) to 3 or 4 K near 220 K and 483 

then varies between -5 and +10 K for BT(11) < 220K. Striping is evident for the coldest 484 

temperatures. Inaccurate temperatures would reduce the potential for providing a distinct optical 485 

depth signal that could be exploited by the ICODIN. The apparent capability of retrieving more 486 

large optical depths without the 6.7-µm channel (Figure 12b), however, suggests that this is not 487 

an issue. On the other hand, the 3-channel combination lacking the 3.7-µm data (Figure 12c) has 488 
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the fewest values of τ > 100.  This suggests that the 3.7-µm channel is most sensitive to τ, so that 489 

having smaller errors in BT(3.7) at the low end of the range (180-200 K) could lead to the 490 

retrieval of more values of τ > 70.  This is consistent with the detailed radiative transfer 491 

calculations in Minnis et al. [2012] that show BTDs using BT(3.7) continue to decrease toward 492 

zero for τ > 100. 493 

 Because the thermal radiation channels used here are sensitive to the vertical profiles of IWC 494 

and particle size, the measured radiances that serve as input to the ICODIN can be affected by 495 

subtle variations in the vertical profiles of those parameters, especially near cloud top. The 496 

CloudSat retrievals used to train the ICODIN, however, are based on retrievals of IWC that can 497 

be highly uncertain. In addition to being biased high by ~25% relative to in situ measurements, 498 

the uncertainty in the individual retrievals often exceeds 100% (Austin et al. [2009]), especially 499 

for lower temperatures, IWC < 0.1 gm-3, and for clouds having τ < 15. Thus, some of the 500 

sensitivity to variations in IWC that can affect the passive radiances is not likely being faithfully 501 

represented in the training set’s output data. Thus, uncertainties of 100% in the ICODIN 502 

retrievals are not surprising.  503 

 The goal of developing the neural network method here was to retrieve optical depths for 504 

opaque clouds as defined by the BCH. Yet, a large fraction of the ice clouds identified as opaque 505 

by the BCH or the SIST were classified as semitransparent by the CloudSat analysis. Those 506 

retrievals are included in the statistics in Table 1. Computing the difference statistics only for 507 

clouds classified as opaque by the ICODIN or by CloudSat provides a better representation of 508 

how well the original goal was met.  Tables 2 and 3 list the difference statistics for those MODIS 509 

pixels having τCS > 8 and τCN > 8, respectively. Removing the smaller CloudSat optical depths 510 

(Table 2) yields lower correlations and a significant bias in the ICODIN results, as expected from 511 
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Figures 4 and 5. The -20% bias in the mean τCN for τCS > 8 is accompanied by a ~20% decrease 512 

in SDD indicating that many of the largest relative uncertainties in Table 1 were due to clouds 513 

having lower optical depths. In Table 3, the correlations are similar to those in Table 2, but the 514 

biases are eliminated and the SDDs drop by another few percent. Thus, when the ICODIN (not 515 

the BCH) classifies the cloud as opaque, it will, on average, have the same ice cloud optical 516 

depth as the CloudSat retrieval.  517 

 The original goal, then, is partially met. Of the total number of pixels originally identified as 518 

opaque, ~67% are semitransparent and ~33% are opaque, according to ICODIN4. The pixels 519 

having τCN < 8 and τCS > 8 comprise ~7% of the total fraction of pixels. This identification 520 

agreement or lack thereof is summarized in Table 4, which breaks down the various 521 

classifications for the ICODIN4 and CloudSat results by percent of the total number of pixels. 522 

Both ICODIN4 and CloudSat agree on the classification ~84% of the time. The disagreement is 523 

nearly balanced with ICODIN4, on the whole, producing 1-2% more opaque clouds than 524 

CloudSat. The near balance is also seen in the optical depths. For those pixels having τCN < 8 and 525 

τCS > 8, the average τCN = 4.7, while the mean τCN is 12.5 for those having τCN >8 and τCS < 8. 526 

The misclassification of ~68% of the pixels as opaque by BCH suggests the need to develop a 527 

more accurate opaque ice cloud screening technique. However, the correct (according to 528 

CloudSat) reclassification of ~60% of the BCH opaque pixels as semitransparent indicates that 529 

ICODIN4 can also serve as an effective screening method for many semitransparent ice clouds. 530 

5.2 Comparisons with other retrievals 531 

Currently, thick cloud optical depths are mostly retrieved using reflected solar radiation 532 

measurements. However, such retrievals yield the total cloud optical depth and not the separate 533 

contributions from ice and water hydrometeors that together often comprise the observed cloud. 534 
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Optically thick ice clouds are commonly part of convective systems that are vertically 535 

contiguous with liquid water clouds or that have anvils overlying low clouds, or that are part of a 536 

baroclinic system with layers of liquid clouds below the ice layers. Despite these potential 537 

differences, it is necessary to compare the ICODIN retrievals with their reflectance-based 538 

counterparts to determine how they are related since the goal is to eventually develop a total 539 

visible optical depth τV at night that matches the daytime retrievals as closely as possible. To 540 

begin that process, two comparisons are made here. 541 

Figure 14 shows the results for a nocturnal case from an Aqua MODIS image over the 542 

tropical eastern Pacific at 0925 UTC, 5 July 2012. The pseudo-RGB image (Figure 14a) reveals 543 

areas of deep convection in various stages of development and dissipation. This case was 544 

selected because the Aqua and SNPP overpasses match closely so that VIIRS and MODIS view 545 

essentially the same area at the same time. The optical depths from MODIS using ICODIN4 are 546 

shown in Figures 14b and 14c using the BCH and SIST, respectively, to select thick ice clouds. 547 

The results based on SIST are the same as those using the BCH criteria except that the SIST 548 

appears to identify some thin cirrus over low clouds as being opaque (~5.5°N, 116°W). If the 549 

SIST alone is used to determine the optical depths (Figure 14d), much of the selected cloud area 550 

is set to the default value of 32. These results can be compared with the DNB retrievals from 551 

VIIRS in Figure 14e, which shows many clouds having τDNB > 120. In most instances, τDNB > 552 

τCN4. As noted above, this result is not surprising given that a significant portion of the cloud 553 

column is likely in liquid form and ICODIN typically underestimates the ice cloud optical depth 554 

when it exceeds 70. This can be seen in the light blue areas in Figure 14b/c, which have values of 555 

60-70, while the DNB optical depths are mostly red with τDNB > 120.  556 
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Similarly, Figure 15 gives an example of applying ICODIN3a to a daytime image, in this 557 

case, from Aqua MODIS data taken over the tropical western Pacific at 0235 UTC, 1 February 558 

2007.  The pseudo-RGB and BT(11) images in Figures 15a and b, respectively, indicate areas of 559 

very deep convection (dark blue in Figure 15b) with low clouds scattered among the ice cloud 560 

areas. The ICODIN3a retrievals were performed using the BCH (Figure 15c) and VISST (Figure 561 

15d) criteria for optically thick ice clouds. During daytime, the VISST retrieves optical depth 562 

directly from the 0.65-µm reflectance, so the opacity should be less uncertain than when using 563 

SIST. The ICODIN3a retrievals can be compared to the VISST optical depths in Figure 15e. As 564 

in the DNB case, the optical depths from the neural network approach are generally less than 565 

their VISST counterparts, however, there appear to be more instances where the τCN3a > τVISST 566 

than for the DNB case in Figure 14. This could be expected to happen based on the noisier 567 

ICODIN3a retrievals shown in Figure 12, which have considerable scatter relative to their 568 

ICODIN4 counterparts and should, therefore, over- or underestimate τCS by greater amounts than 569 

ICODIN4.  570 

Daytime retrievals of τ or IWP for thick ice clouds, similar to those in Figures 14 and 15, 571 

generally assume that the cloud is entirely ice and the effective particle size for the entire cloud 572 

is the same as the retrieved value, even though it often represents only the top portion of the 573 

cloud column. As shown by Minnis et al. [2007] and others, the true total optical depth retrieved 574 

with that assumption will typically be underestimated by τVISST or τDNB, but that is a problem 575 

addressed elsewhere [Smith et al. 2015]. The parameter, τVISST, retrieved at solar wavelengths 576 

uses the single-phase assumption. Thus, to achieve parity between τCS or τCN and τVISST, it is 577 

necessary to find some means for estimating τV from the ice optical depth.  578 
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For purposes of demonstration, τV is estimated here for the two images in Figures 14b and 579 

15c using one of potentially many approaches. Smith [2014] developed a method for estimating 580 

vertical profiles of cloud water content (CWC) based on MODIS retrievals of Tc, τVISST, and 581 

IWPVISST matched to CloudSat CWC that also yielded a parameterization of the IWPCS as a 582 

function of IWPVISST, which is typically underestimated for optically thick ice clouds because of 583 

larger particle sizes in the interior of the cloud than at cloud top. Smith et al. [2015] applied the 584 

parameterization, which assumes that liquid water comprises a portion of the ice cloud whenever 585 

τVISST > 10, to more than 250,000 GOES pixels and tabulated the resulting mean values of τVISST 586 

and IWPCS for six intervals of τVISST. Assuming equivalence of τCS and τCN, and that re of the ice 587 

portion of the cloud increases with IWPCS from 30 to 80 µm, the estimated value of τCN was 588 

computed as the product, 1.5* IWPCS / re. With those assumptions, the resulting relationship is  589 

 590 

τV =  0.976 * τCN +  0.0115*τCN
2.     (4) 591 

 592 

Equation (4) was applied to values of τCN > 10 from BCH-ICODIN for the images in Figures 593 

14 and 15. The results are compared in Figure 16 to those from VISST applied during the night 594 

using the VIIRS DNB channel (Figure 14e, 16a) and during the day using the MODIS visible 595 

channel (Figure 15d, 16c). The nocturnal values of τV (Figure 16b) appear to be much closer to 596 

their DNB counterparts (Figure 16a) than the τCN4 results (Figure 14b). Except for the more 597 

contiguous red areas in the main cloud mass (upper right), few areas of overestimation are 598 

evident. However, τDNB for the brightest clouds in the other systems remains underestimated by 599 

τV. This is likely due to the large optical depth limitations discussed earlier, although the DNB 600 

retrievals could be biased. Nevertheless, this initial result is encouraging for providing a 601 
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reasonable total optical depth estimate for these thick ice clouds at night. With proper 602 

assumptions about the effective radii of the ice and water portions of those clouds, a more 603 

realistic estimate of CWP could also be made. 604 

The potential for estimating τV during daytime with infrared data only is less encouraging, 605 

but not out of the realm of possibility. It is clear in Figure 16d that τV both under- and 606 

overestimates the corresponding τVISST retrievals (Figure 16c) much more frequently than in the 607 

DNB case. While τV is considerably closer to τVISST than τCN3a (Figure 15c), it tends to draw out 608 

some maxima that are not seen in the VISST retrievals. Again, this is due to the noisy retrieval 609 

discussed earlier. Ideally, having an accurate independent measurement of the ice optical depth 610 

during daytime would allow the retrieval of the liquid cloud optical depth underneath the ice 611 

cloud and together yield a more accurate total optical depth and a better estimate of the CWP. 612 

The results in CODIN3a suggest that its accuracy is currently insufficient for that application. It 613 

should be noted that this example case uses a crude approximation to estimate τV simply for 614 

demonstration, so any final conclusion about the efficacy of using ICODIN3a is unwarranted. 615 

Perhaps, with further refinement it could be used to improve daytime retrievals of multiphase 616 

and thick ice-over-water multilayered clouds using a method similar to that employed by Minnis 617 

et al. [2007] to retrieve IWP from combined microwave LWP and imager retrievals of τVISST.  618 

 619 

6. Conclusions 620 

A neural network approach, ICODIN, using four combinations of thermal and shortwave 621 

infrared wavebands has been developed to estimate opaque ice cloud optical depths at night, a 622 

quantity heretofore ignored in passive infrared remote sensing due to the blackbody limit of 623 

infrared emission. Clouds, especially those composed of ice crystals, are not true blackbodies, 624 
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but have detailed vertical structures in terms of ice water content, particle size and shape, water 625 

vapor, and temperature that can affect the emitted radiances. Subtle changes in those components 626 

related to the overall depth of the cloud as well as the radiating temperature of the cloud top can 627 

potentially provide some information about the ice cloud optical depth. This potential is the 628 

physical basis for the application of the neural network to this problem. Training of the ICODIN 629 

used only 2 months of CloudSat data taken over the entire Earth. Even with no distinction 630 

between air masses, surface types and temperatures, and cloud types, the ICODIN yields ice 631 

cloud optical depths that are highly correlated, explaining 64% of the variance, with those from 632 

the CloudSat radar-only algorithm and are unbiased, on average.  633 

Application of the ICODIN requires initial screening of the data to identify opaque ice 634 

clouds, which are those assumed to have optical depths greater than or equal to 8. The two 635 

techniques, the BCH and SIST, used here greatly overestimate the frequency of opaque ice 636 

clouds but the ICODIN successfully accounts for the semi-transparent cloud pixels by assigning 637 

them appropriate values of τ. Using 4 channels (ICODIN4) produces the best overall agreement 638 

with CloudSat, while the combination of 3.7, 11, and 12 µm (ICODIN3b) is the most promising 639 

3-channel complement. The 3.7-µm channel is the one most sensitive to ice cloud optical depth. 640 

When the ICODIN4 determines a cloud to have τ > 8, the result is, on average, unbiased with 641 

respect to CloudSat and has a relative standard error of ~72%. The relative error increases to 642 

100% if clouds of all optical depths are included.  643 

The training of the ICODIN here has relied on the CloudSat 2B-CWC-RO product, which is 644 

known to have relatively large uncertainties that undoubtedly contribute to some of the error in 645 

the ICODIN retrievals. Training with other IWC products (e.g., Deng et al. [2010], Delanoë and 646 

Hogan [2010]) that include CALIPSO will likely yield similar results in a relative sense because 647 
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they are all closely correlated with the same in situ measurements [Deng et al. 2013]. Because 648 

CloudSat and CALIPSO are experimental satellites, their retrieval algorithms are periodically 649 

updated to improve the accuracy of the various parameters. Future research into neural networks 650 

for opaque cloud retrievals at night should explore the use of the alternative IWC retrievals as 651 

well as revisions of the 2B-CWC-RO product. Additionally, the radar-retrieved values of re 652 

should be analyzed to develop a means for computing IWP from τCN with the goal of estimating 653 

CWP for the subject cloud systems. 654 

The analysis presented here has only begun the exploration of the ICODIN’s potential. 655 

Reduction of uncertainties in the ICODIN may be possible by using a larger training dataset that 656 

incorporates data from all months of the year and possibly from additional years. The influence 657 

of the air mass, which may also impact the accuracy, could be taken into account by introducing 658 

additional input parameters such as the surface type and numerical weather analyses of surface 659 

temperature and temperature and humidity at selected levels. In the absence of a sensor having 660 

high precision for BT(3.7) < 220 K, it may be helpful to provide the algorithm with some 661 

indicator of the quality of the BT(3.7) value in order to downplay its influence at very low 662 

temperatures. An indicator of cloud type such as stratiform or convective might also be valuable 663 

as an input. With the implementation of these additional suggestions, it might be possible to 664 

significantly increase the technique’s accuracy. 665 

Only near-nadir measurements from MODIS were used in the development of the ICODIN. 666 

Thus, application of the method to satellite imager data will require understanding the 667 

dependence of the technique on VZA and may require training with other datasets, such as 668 

GOES or VIIRS, that provide a wide range of VZA views when matched with CloudSat. The 669 

examples shown here suggest that the VZA effect may be relatively small. Use of the technique 670 
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for other imagers such as VIIRS may require some means to account for differences in the 671 

spectral response functions such as spectral band adjustment factors that are based on 672 

hyperspectral data (e.g., Scarino et al. [2015]).  673 

This study has definitively shown that the optical depth of ice clouds can be estimated with 674 

reasonable accuracy for clouds that are thicker than the “blackbody limit.” While much 675 

additional analysis remains to be done, the development of the ICODIN approach opens up the 676 

potential for more accurate 24-h monitoring of clouds and for providing forecast models with 677 

estimates of cloud water path at all times of the diurnal cycle. 678 

 679 

Acknowledgments. This research is supported by the NASA Modeling, Analysis, and Prediction 680 

Program and the NASA CERES Project.  681 

References 682 

Austin, R. T., A. J. Heymsfield, and G. L. Stephens (2009), Retrieval of ice cloud microphysical 683 

parameters using the CloudSat millimeter-wave radar and temperature, J. Geophys. Res., 684 

114, D00A23, doi:10.1029/2008JD010049. 685 

Chen, Y., H. Wang, J. Min, X.-Y. Huang, P. Minnis, R. Zhang, J. Haggerty, and R. Palikonda, 686 

(2015), Analysis of the cloud water component for WRF: Variational assimilation of cloud 687 

liquid/ice water path, J. Appl. Meteorol. Climatol., 32, doi:10.1175/JAMC-D-14-0243.1. 688 

Delanoë, J. and R. J. Hogan (2010), Combined CloudSat–CALIPSO–MODIS retrievals of the 689 

properties of ice clouds, J. Geophys. Res., 115, D00H29, doi:10.1029/2009JD012346.  690 

Deng, M., G. G. Mace, Z. Wang, and R. P. Lawson (2013), Evaluation of several A-Train ice 691 

cloud retrieval products with in situ measurements collected during the SPARTICUS 692 

campaign. J. Appl. Meteor. Climatol., 52, 1014-1030, doi:10.1175/JAMC-D-12-054.1. 693 

Deng, M., G. G. Mace, Z. Wang, and H. Okamoto (2010), Tropical Composition, Cloud and 694 

Climate Coupling Experiment validation for cirrus cloud profiling retrieval using CloudSat 695 

radar and CALIPSO lidar, J. Geophys. Res., 115, D00J15, doi:10.1029/2009JD013104.  696 

Fridlind, A. M., A. S. Ackerman, J.-P. Caboreau, J. Fan, W. W. Grabowski, A. Hill, T. R. Jones, 697 



 31 

M. M. Khaiyer, G. Liu, P. Minnis, H. Morrison, L. Nguyen, S. Park, J. C. Petch, J. P. Pinty, 698 

C. Schumacher, B. Shipway, A. C. Varble, X. Wu, S. Xie, and M. Zhang (2012), A 699 

comparison of TWP-ICE observational data with cloud-resolving model results, J. Geophys. 700 

Res., 117, D5, doi:10.1029/2011JD016595. 701 

Heidinger, A. K. (2003), Rapid daytime estimation of cloud properties over a large area from 702 

radiance distributions, J. Atmos. Oceanic Technol., 20, 1237–1250. 703 

Hillger, D. et al. (2013), First-light imagery from Suomi NPP VIIRS, Bull. Amer. Meteor. Soc., 704 

94, 1019–1029. 705 

 Hong, G., P. Yang, A. K. Heidinger, M. J. Pavolonis, B. A. Baum, and S. E. Platnick (2010a), 706 

Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral 707 

technique based on the MODIS 8–12 µm window bands, J. Geophys. Res., 115, 708 

doi:10.1029/2010JD014004. 709 

Hong, G., P. Minnis, J. K. Ayers, C. R. Yost, and W. L. Smith, Jr. (2010b), Nighttime retrievals 710 

of cloud properties from infrared radiances at 3.7, 6.7, 11.0, and 12.0 µm, AMS 17th Conf. 711 

Satellite Meteorology & Oceanography, Annapolis, MD, Sept. 27-30, P1.10. [Available 712 

online at http://www-pm.larc.nasa.gov/site/doc-library/259-AMS_2010_17th.pdf] 713 

Hong, G., P. Minnis, W. L. Smith, Jr., S. Sun-Mack, J. K. Ayers, C. R. Yost, and Y. Chen, 714 

(2012), Non-opaque and opaque ice cloud properties from infrared radiances at 3.7, 6.7, 11.0, 715 

and 12.0 µm, 2012 Intl. Radiation Symp., Berlin, Germany, 6-10 August, IRS2012-491-2. 716 

[Available online at http://www-pm.larc.nasa.gov/site/doc-library/258-IRS2012_Hong.pdf] 717 

Huang, H.-L., P. Yang, H. Wei, B. A. Baum, Y. X. Hu, P. Atonelli, and S. A. Ackerman (2004), 718 

Inference of ice cloud properties from high spectral resolution infrared observations, IEEE 719 

Trans. Geosci. Remote Sens., 42, 842–852. 720 

Im, E., S. L. Durden, and C. Wu, (2005), Cloud profiling radar for the CloudSat mission, IEEE 721 

Trans. Aerosp. Electron. Syst., 20, 15–18, doi:10.1109/MAES.2005.1581095. 722 

Inoue, T. (1985), On the temperature and effective emissivity determination of semi-transparent 723 

cirrus clouds by bispectral measurements in the 10 micron window region, J. Meteor. Soc. 724 

Japan, 63, 88–99. 725 

Jones, T. A., K. Knopfmeier, D. Wheatley, G. Creager, P. Minnis, and R. Palikonda (2015a), 726 

Storm-scale data assimilation and ensemble forecasting with the NSSL Experimental Warn-727 



 32 

on Forecast. Part 2: Combined radar and satellite data experiments, Wea. Forecasting, 728 

submitted. 729 

Jones, T. A., D. J. Stensrud, P. Minnis, and R. Palikonda (2013), Evaluation of a forward 730 

operator to assimilate cloud water path into WRF-DART, Mon. Wea. Rev., 141, 2272-2289, 731 

doi:10.1175/MWR-D-12-00238.1.  732 

Jones, T. A., D. J. Stensrud, L. Wicker, P. Minnis, and R. Palikonda (2015a), Simultaneous radar 733 

and satellite data storm-scale assimilation using an ensemble Kalman filter approach for 24 734 

May 2011, Mon. Wea. Rev., 143, 165-194, doi:10.1175/MWR-D-14-00180.1. 735 

Karayiannis, N. B. and A. N. Venetsanopoulos (1993), Efficient learning algorithms for neural 736 

networks (ELEANNE), IEEE Trans. Systems, Man, Cybernetics, 23, 1372-1383. 737 

Kato, S., S. Sun-Mack, W. F. Miller, F. G. Rose, Y. Chen, P., Minnis, and B. A. Wielicki (2010), 738 

Relationships among cloud occurrence frequency, overlap, and effective thickness derived 739 

from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115, 740 

D00H28, doi:10.1029/2009JD012277. 741 

Kato, S., et al. (2011), Improvements of top-of-atmosphere and surface irradiances with 742 

CALIPSO, CloudSat, and MODIS-derived cloud and aerosol properties, J. Geophys. Res., 743 

116, D19209, doi:10.1029/2011JD016050.  744 

King, M. D., et al. (2003), Cloud and aerosol properties, precipitable water, and profiles of 745 

temperature and water vapor from MODIS, IEEE Trans. Geosci. Remote Sens., 41, 442–458. 746 

Kox, S., L. Bugliaro, and A. Ostler (2014), Retrieval of cloud optical thickness and top altitude 747 

from geostationary remote sensing, Atmos. Meas. Tech., 7, 3233-3246, doi:10.5194/amt-7-748 

3233-2014. 749 

Lin, X. and J. Coakley, Jr. (1993), Retrieval of properties for semitransparent clouds from 750 

multispectral infrared imagery data, J. Geophys. Res., 98, 18501–18514. 751 

Liou, K.-N., S. C. Ou, Y. Takano, F. P. J. Valero, and T. P. Ackerman (1990), Remote sounding 752 

of the tropical cirrus cloud temperature and optical depth using 6.5 and 10.5 µm radiometers 753 

during STEP, J. Appl. Meteorol., 29, 716–726. 754 

McGill, M. J., L. Li, W. D. Hart, G. M. Heymsfield, D. L. Hlavka, P. E. Racette,L. Tian, M. A.  755 

Vaughan, and D. M. Winker (2004), Combined lidar-radar remote sensing: Initial results 756 

from CRYSTAL-FACE, J. Geophys. Res., 109, D07203, doi:10.1029/2003JD004030. 757 

Miller, S. D. and R. E. Turner (2009), A dynamic lunar spectral irradiance data set for 758 



 33 

NPOESS/VIIRS day/night band nighttime environmental applications, IEEE Trans. Geosci. 759 

Remote Sens., 47, 2316-2329.  760 

Menzel, W. P., R. A. Frey, B. A. Baum, and H. Zhang (2006), MODIS cloud top properties and 761 

cloud phase algorithm theoretical basis document, 762 

http://modis.gsfc.nasa.gov/data/atbd/atbd_mod04.pdf. 763 

Minnis, P., G. Hong, W. L. Smith, Jr., and P. W. Heck, 2010: Cloud optical depths at night: 764 

Going beyond the infrared blackbody limits. 2010 NOAA STAR AWG/RRR-Review, Madison, 765 

WI, June 7-11. [Available online at http://www-pm.larc.nasa.gov/site/doc-library/256-766 

Minnis.poster.AWG.10.pdf] 767 

Minnis, P., G. Hong, J. K. Ayers, W. L. Smith, Jr., S. Sun-Mack, C. R. Yost, Y. Chen, and P. W. 768 

Heck, 2011a: Enhanced nighttime cloud retrievals. 2011 NOAA STAR GOES-R AWG Ann. 769 

Rev., Ft. Collins, CO, June 14-16. [Available online at http://www-pm.larc.nasa.gov/site/doc-770 

library/257-Minnis.poster.AWG.11.pdf] 771 

Minnis, P., et al. (2012), Simulations of infrared radiances over a deep convective cloud system 772 

observed during TC4: Potential for enhancing nocturnal ice cloud retrievals. Remote Sens., 4, 773 

3022-3054, doi:10.3390/rs4103022.  774 

Minnis, P., J. Huang, B. Lin, Y. Yi, R. F. Arduini, T.-F. Fan, J. K. Ayers, and G. G. Mace 775 

(2007), Ice cloud properties in ice-over-water cloud systems using TRMM VIRS and TMI 776 

data. J. Geophys. Res., 112, D06206, doi:10.1029/2006JD007626. 777 

Minnis, P., et al. (2008), Near-real time cloud retrievals from operational and research 778 

meteorological satellites, Proc. SPIE Europe Remote Sens. 2008, Cardiff, Wales, UK, 15-18 779 

September, 7107-2, 8 pp. [Available online at http://www-pm.larc.nasa.gov/site/doc-780 

library/99-Minnis.etal.SPIE.abs.08.pdf] 781 

Minnis, P., et al. (2011b), CERES Edition-2 cloud property retrievals using TRMM VIRS and 782 

Terra and Aqua MODIS data, Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 783 

4374-4400. 784 

Minnis, P., et al. (2010), CERES Edition 3 cloud retrievals, AMS 13th Conf. Atmos. Rad., 785 

Portland, OR, June 27 – July 2, 5.4. [Available online at 786 

https://ams.confex.com/ams/pdfpapers/171366.pdf] 787 

NASA, 2015: CERES Terra & Aqua Edition 4a SSF Cloud Properties – Accuracy and 788 

Validation. CERES Technical Report, 43 pp., August 15. [Available online at http://www-789 



 34 

pm.larc.nasa.gov/site/doc-library/260-ssf_cloud_prop_aqua_ed4.cal_val.pdf] 790 

Norris, P. M, and A. M. da Silva (2015), Monte Carlo Bayesian inference on a statistical model 791 

of sub-grid column moisture variability using high-resolution cloud observations. Part I: 792 

Sensitivity tests and results, Q. J. Roy. Meteorol. Soc., submitted. 793 

Ou, S.C., K.-N. Liou, W. M. Gooch, and Y. Takano (1993), Remote sensing of cirrus cloud 794 

properties using Advanced Very-High Resolution Radiometer 3.7 and 10.9-µm channels, 795 

Appl. Opt., 32, 2171–2180. 796 

Scarino, B. R., D. R. Doelling, P. Minnis, A. Gopalan, T. Chee, R. Bhatt, and C. Lukashin, 2015: 797 

An online interface for calculating spectral band difference adjustment factors derived from 798 

SCIAMACHY data. IEEE Trans. Geosci. Remote Sens., accepted. 799 

Smith, W. L., Jr. (2014), 4-D cloud properties from passive satellite data and applications to 800 

resolve the flight icing threat to aircraft, Ph.D. Dissertation, Univ. Wisconsin-Madison, 801 

Madison, WI, 165 pp. [http://www-pm.larc.nasa.gov/icing/pub/WLS-Dissertation.pdf] 802 

Smith, W. L., Jr., P. Minnis, C. Fleeger, M. Khaiyer, D. Spangenberg, R. Palikonda, 2015: An 803 

empirical profiling method to improve the resolution of cloud ice and liquid water content 804 

using satellite imager data. Submitted to J. Appl. Meteor. Climatol.  805 

Stephens, G. L., et al. (2002), The CloudSat mission and A‐Train, Bull. Am. Meteorol. Soc., 83, 806 

1771–1790. 807 

Stephens, G. L., et al. (2008), CloudSat mission: Performance and early science after the first 808 

year of operation, J. Geophys. Res., 113, D00A18, doi: 10.1029/2008JD009982.  809 

Szejwach, G. (1982), Determination of semi-transparent cirrus cloud temperature from infrared 810 

radiances: Application to Meteosat, J. Appl. Meteorol., 21, 384-393. 811 

Tian, B., B. J. Soden, and X. Wu (2004), Diurnal cycle of convection, clouds, and water vapor in 812 

the tropical upper troposphere: Satellites versus a general circulation model, J. Geophys. 813 

Res., 109, D10101, doi:10.1029/2003JD004117. 814 

Walther, A., A. K. Heidinger, and S. Miller (2013), The expected performance of cloud optical 815 

and microphysical properties derived from Suomi NPP VIIRS day/night band lunar 816 

reflectance, J. Geophys. Res., 118, 13230-13240, doi:10.1002/2013JD020478. 817 

Winker, D. M., W. H. Hunt, and M. J. McGill (2007), Initial performance assessment of 818 

CALIOP, Geophys. Res. Lett., 34, L19803, doi:10.1029/2007GL030135. 819 

Yue, Q., and K.-N. Liou (2009), Cirrus cloud optical and microphysical properties determined 820 



 35 

from AIRS infrared spectra, Geophys. Res. Lett., 36, L05810, doi:10.1029/2008GL036502. 821 



 1 

Table 1. Correlation and differences between ICODIN and CPR ice cloud optical depths. 1 

Method Year Mean R Bias Bias (%) SDD SDD (%) 

ICODIN4 
3.7, 6.7, 11, 12 µm 

2007 8.85 0.80 -0.07 -0.8 8.73 99 
2008 8.50 0.78 -0.10 -1.2 8.89 105 

ICODIN3a 
6.7, 11, 12 µm 

2007 8.95 0.79 -0.05 -0.6 9.20 103 
2008 8.60 0.75 -0.07 -0.8 9.45 110 

ICODIN3b 
3.7, 11, 12 µm 

2007 8.83 0.79 -0.09 -1.0 8.91 101 
2008 8.51 0.78 -0.10 -1.2 8.94 105 

ICODIN3c 
3.7, 6.7, 11 µm 

2007 8.86 0.80 -0.05 -0.6 8.80 99 
2008 8.51 0.77 -0.10 -1.2 9.13 107 
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 8 
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 10 
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 12 

 13 
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 15 

Table 2. Same as Table 1, except for all pixels with τCS > 8. 16 

Method Year Mean R Bias Bias (%) SDD SDD (%) 

ICODIN4 
3.7, 6.7, 11, 12 µm 

2007 18.6 0.72 -3.7 -19.9 14.2 76.3 
2008 18.1 0.69 -3.95 -21.8 14.7 81.2 

ICODIN3a 
6.7, 11, 12 µm 

2007 18.0 0.72 -4.5 -25.0 14.7 81.7 
2008 17.4 0.68 -4.8 -27.5 15.3 87.9 

ICODIN3b 
3.7, 11, 12 µm 

2007 18.3 0.71 -4.0 -21.9 14.4 78.7 
2008 17.9 0.69 -4.1 -22.9 14.7 82.1 

ICODIN3c 
3.7, 6.7, 11 µm 

2007 18.5 0.72 -3.8 -20.5 14.3 77.3 
2008 18.0 0.77 -4.1 -22.8 15.1 83.9 

 17 
 18 

 19 

 20 

 21 

 22 

 23 

 24 

 25 

 26 

 27 
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 29 

 30 

Table 3. Same as Table 1, except for all pixels with τCN > 8. 31 

Method Year Mean R Bias Bias (%) SDD SDD (%) 

ICODIN4 
3.7, 6.7, 11, 12 µm 

2007 19.7 0.73 -0.05 -0.2 14.0 71.1 
2008 19.5 0.69 -0.04 -0.2 14.5 74.3 

ICODIN3a 
6.7, 11, 12 µm 

2007 19.3 0.71 -0.04 -0.2 14.5 75.1 
2008 19.0 0.67  0.08  0.4 15.2 80.0 

ICODIN3b 
3.7, 11, 12 µm 

2007 19.6 0.72 0.02  0.1 14.2 72.4 
2008 19.5 0.69  0.09  0.5 14.5 74.3 

ICODIN3c 
3.7, 6.7, 11 µm 

2007 20.1 0.72  0.00  0.0 14.3 71.1 
2008 19.9 0.66 -0.05 -0.3 15.2 76.4 

 32 
 33 
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 4 

Table 4. Frequency (%) of cloud thickness category, CODIN4 system vs. CloudSat. Original opaque 35 
indicates the fraction of pixels classified by BCH or SIST as opaque. 36 

Method BCH SIST 

# samples 1.7 x 106 1.1 x 106 

Year 2007 2008 2007 2008 

Category τCS < 8 τCs > 8 τCS < 8 τCS > 8 τCS < 8 τCS > 8 τCS < 8 τCS > 8 

τCN4 < 8 59.0   7.0 60.4   7.2 35.3 2.8 35.7 3.0 

τCN4 > 8   8.8 25.2   8.6 23.8 13.1 48.5 13.3 48.0 

Original opaque 67.8 32.2 69.0 31.0 48.4 51.3 49 51 
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 43 
 44 
Figure 1. Parameters derived from GOES-13 over southern Great Plains, 2015 UTC, 20 May 45 
2013. (a) Ice water path, (b) brightness temperature difference between 6.7 and 11 µm channels. 46 
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 49 

 50 

Figure 2. Schematic diagram of three-layer neural network used to determine opaque ice cloud 51 
visible optical depth τ. 52 

 53 

 54 



 7 

 55 

Figure 3. Probability distributions of 2007 global τ values retrieved from CloudSat data and from 56 
Aqua MODIS using ICODIN4 with four observed 11-µm brightness temperature thresholds. (bin 57 
size = 1). 58 
 59 



 8 

 60 
Figure 4. Ratio of occurrence frequencies of ICODIN4 optical depth to those of CloudSat optical 61 
depth for a given CloudSat ice cloud optical depth. Note scale difference between left and right 62 
panels. Left panels for τ < 50, right panels for τ > 50. 63 
 64 

  65 
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 66 

Figure 5. Density scatterplots of nocturnal opaque ice cloud optical depths retrieved from 67 
CloudSat and Aqua MODIS data using ICODIN4 from (a) the training period, 2007, and (b) the 68 
validation period, 2008. 69 
  70 
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 71 

 72 

Figure 6. Mean bin opaque ice cloud optical depth from CPR retrieval as a function of ICODIN4 73 
optical depth from 2007 training (solid) and 2008 validation results (dashed). Each bin 74 
corresponds to 2.5 (τCN4 < 50) and 5 (τCN4 ≥ 50) ICODIN4 optical depth units.  75 
  76 
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 77 
 78 

 79 
Figure 7. Geographical distribution of 2°x2° regional mean opaque ice cloud optical thickness 80 
during nighttime in 2008 from (a) CloudSat CPR retrievals and (b) Aqua MODIS ICODIN4 81 
retrievals. 82 
  83 
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 84 
 85 
Figure 8. Density plots of the correlation between 2008 2°x2° regional mean τ estimated from 86 
data in Figure 5 (bin size = 1). 87 
 88 
  89 
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 90 

 91 

Figure 9. Example of matched Aqua MODIS and CloudSat CPR data and retrievals over eastern 92 
tropical Pacific Ocean (108°W-84°W, 4°S-15°N), 0800 UTC, 6 June 2008. (a) MODIS granule 93 
RGB [Red: Inverted BT(11), Green: Inverted BT(12), Blue: BTD(11-12)] image with overlay of 94 
CloudSat ground track as black and red (showing opaque ice clouds) line, (b) MODIS BT(11) 95 
with CloudSat ground track, (c) CPR reflectivity along a track segment, and (d) estimated optical 96 
thickness from CloudSat (blue) and ICODIN4 for opaque ice clouds (red). 97 
  98 
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 99 

Figure 10. Estimated opaque ice cloud optical thickness for Aqua MODIS granule (see Figures 100 
9a, b) at 0800 UTC, 6 June 2008. τCN4 from ICODIN4 (3.7, 6.7, 11.0, and 12.0 µm) using (b) 101 
BCH and (c) SIST to identify opaque ice clouds. and (c) from CERES Edition-4 SIST retrievals 102 
using SIST retrievals or default values for opaque ice clouds. 103 
  104 
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 105 

Figure 11. Same as Figure 10, except for (b) τCN3a from ICODIN3a (6.7, 11.0, and 12.0 µm) and 106 
(c) τCN3b from ICODIN3b (3.7, 11.0, and 12.0 µm), and (d) τCN3c from ICODIN3c (3.7, 6.7, and 107 
11.0). The BCH method was used in all cases to identify opaque ice cloud pixels. 108 
  109 
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 111 

 112 

Figure 12. Comparisons of “opaque” ice cloud optical thickness from three-channel methods 113 
with that, τCN4, from four-channel technique (ICODIN4) for the MODIS granule in Figure 7. (a) 114 
τCN3a from ICODIN3a (6.7, 11.0, and 12.0 µm) and (b) τCN3b from ICODIN3b (3.7, 11.0, and 115 
12.0 µm), and (d) τCN3c from ICODIN3c (3.7, 6.7, and 11.0). 116 
 117 
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 119 

Figure 13. Aqua MODIS image at night over the eastern Pacific at 0925 UTC, 5 July 2012, (a) 120 

BT(11) and (b) BTD(3.7-11). 121 
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 123 

 124 
Figure 14. Opaque ice cloud optical depths estimated using three methods at night over the 125 
eastern Pacific at 0925 UTC, 5 July 2012. (a) Aqua MODIS RGB [Red: inverted BT(11), Green: 126 
inverted BT(12), Blue: BTD(3.7-11)]; τCN4 estimated from ICODIN4 applied to Aqua MODIS 127 
data with (b) BCH and (c) SIST selection of opaque clouds, (d) τ estimated from SIST method, 128 
(e) opaque ice cloud τ estimated from DNB retrieval applied to matching SNPP VIIRS data.  129 
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 130 

Figure 15. Comparison of cloud optical thicknesses estimated over western Pacific from daytime 131 
Aqua MODIS data taken at 0235 UTC, 1 February 2007. (a) RGB [Red: 0.64 µm reflectance, 132 
Green: BTD(3.7-11), Blue: BT(11)] image; (b) BT(11); τCN3a from ICODIN3a using (c) BCH 133 
and (d) VISST to select opaque ice clouds; and (e) total cloud τ estimated using VISST. 134 
  135 
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 137 

Figure 16. Cloud optical depths for images in (a & b) Figure 14a and (c & d) Figure 15a. Optical 138 
depths derived from (a) VIIRS DNB channel, (b) τCN4 and Eq (3), (c) MODIS visible channel, 139 
and (d) τCN3a and Eq (3). 140 
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