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ABSTRACT

Three years of surface and Geostationary Operational Environmental Satellite (GOES) data from the

Department of Energy Atmospheric Radiation Measurement (ARM) Southern Great Plains (SGP) site are

used to evaluate the NASA GISS Single Column Model (SCM) simulated clouds from January 1999 to

December 2001. The GOES-derived total cloud fractions for both 0.58 and 2.58 grid boxes are in excellent

agreement with surface observations, suggesting that ARM point observations can represent large areal

observations. Low (,2 km), middle (2–6 km), and high (.6 km) levels of cloud fractions, however, have

negative biases as compared to the ARM results due to multilayer cloud scenes that can either mask lower

cloud layers or cause misidentifications of cloud tops. Compared to the ARM observations, the SCM simu-

lated most midlevel clouds, overestimated low clouds (4%), and underestimated total and high clouds by 7%

and 15%, respectively. To examine the dependence of the modeled high and low clouds on the large-scale

synoptic patterns, variables such as relative humidity (RH) and vertical pressure velocity (omega) from North

American Regional Reanalysis (NARR) data are included. The successfully modeled and missed high clouds

are primarily associated with a trough and ridge upstream of the ARM SGP, respectively. The PDFs of

observed high and low occurrence as a function of RH reveal that high clouds have a Gaussian-like distri-

bution with mode RH values of ;40%–50%, whereas low clouds have a gammalike distribution with the

highest cloud probability occurring at RH ;75%–85%. The PDFs of modeled low clouds are similar to those

observed; however, for high clouds the PDFs are shifted toward higher values of RH. This results in a negative

bias for the modeled high clouds because many of the observed clouds occur at RH values below the SCM-

specified stratiform parameterization threshold RH of 60%. Despite many similarities between PDFs derived

from the NARR and ARM forcing datasets for RH and omega, differences do exist. This warrants further

investigation of the forcing and reanalysis datasets.
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1. Introduction

Clouds are one of the most important elements in the

earth’s hydrology and energy cycles, acting particularly

through precipitation processes (Del Genio et al. 2005a)

and the earth’s radiation budget. Their treatment in

weather forecast and climate models is a significant

source of error and uncertainty (Gao and Li 2007; Cess

et al. 1996; Randall et al. 2006). Although considerable

uncertainty still surrounds cloud feedbacks in general

circulation models (GCMs), one can assume that to

reasonably simulate future climate, these models should

be able to accurately reproduce the current climatology

of all clouds at a given location. Due to the complexities

of GCMs, the Single Column Model (SCM) approach

was developed to evaluate parameterizations (Randall

et al. 1996) and has been implemented by the Atmospheric

Radiation Measurement (ARM) program (Ackerman and

Stokes 2003) to improve the representation of clouds

and radiation in GCMs using long-term surface obser-

vations (Klein and Del Genio 2006).

SCM versions of GCMs typically have been used to sim-

ulate the atmosphere over limited time periods, driven

by field experiment data or enhanced soundings during

intensive observing periods (IOPs; see the 2005 special

issue of J. Geophys. Res., volume 110, issue D15). These

exercises have proven difficult to interpret because model–

data discrepancies can be due to inaccurate large-scale

advective forcing, inaccurate model physics, or prob-

lems with the cloud data, and instantaneous model er-

rors may not be climatically representative or diagnostic

of problems with the model’s cloud feedback (Del Genio

et al. 2005b). Therefore, it is necessary to use a longer

time series to have a statistically meaningful comparison.

Compared to observations from the International

Satellite Cloud Climatology Project (ISCCP) (Rossow

and Schiffer 1999) and the Clouds and the Earth’s Ra-

diant Energy System (CERES) (Wielicki et al. 1996;

Minnis et al. 2010a, manuscript submitted to IEEE Trans.

Geosci. Remote Sens.), Zhang et al. (2005) found that the

majority of GCMs only simulated 30%–40% of observed

midlatitude midlevel-top clouds and half of the GCMs

underestimated low-level-top clouds, however, not at a

statistically significant level. Limitations in the passive

satellite data prevented a thorough analysis of high, op-

tically thin clouds due to the observed differences be-

tween the CERES and ISCPP datasets.

To ensure that climate models reliably represent clouds,

the parameterizations of cloud–radiation–precipitation

interactions and the associated heating and other feed-

backs in the models should faithfully represent what is

found in nature. Therefore, the time-dependent fre-

quency distributions of cloud properties from the model

should also be compared to those derived from obser-

vations. Ultimately, improved cloud parameterizations

can only result from an integrated analysis of all avail-

able datasets, including long-term surface and satellite

observations, SCMs, and reanalyses.

To provide a much-needed source of long-term cloud–

radiation data for evaluating model parameterizations,

the ARM program established the Southern Great Plains

(SGP) site, centered near Lamont, Oklahoma, in 1993.

ARM has also included satellite observations to deter-

mine cloud and radiative properties (Minnis et al. 1995,

2001) to complement the surface data, provide large-scale

averages, and bound the radiation budget at the top of

the atmosphere (TOA). In addition to the surface and

satellite measurements, Xie et al. (2004) developed the

continuous forcing product (1999–2001) over the SGP

site. This product is often of a quality comparable to that

from the Intensive Observing Periods (IOPs) and has the

advantage of being available for driving SCMs over long

periods (Del Genio et al. 2005b).

This paper reports on a continuous period of long-term

surface and satellite observations, SCM simulations, and

their association with large-scale synoptic patterns and

variables provided by the North American Regional

Reanalysis (NARR) over the ARM SGP site. Although

the evaluation of an individual SCM driven by a forcing

dataset at one location may have limited practical usage,

the ARM SGP site is representative of a continental cli-

mate in the midlatitudes. The paper is formatted as fol-

lows. Section 2 gives a brief description of the different

datasets used in this study. In section 3, satellite- and

surface-observed clouds are compared to the SCM sim-

ulations on hourly, monthly, and seasonal time scales. SCM

performance is investigated within section 4 with the aid of

large-scale parameters obtained from NARR and ARM

forcing. Pertinent conclusions are summarized along with

plans for future work in the final section.

2. Datasets

Surface, satellite, ARM continuous forcing, and NARR

reanalysis datasets have been collected at the ARM

SGP site during the period 1999–2001 for this study.

Because the ARM continuous forcing is required to run

the GISS SCM and is only available during 1999–2001,

model results are compared with both surface and sat-

ellite observations for this 3-yr period. Both surface and

satellite datasets are averaged into hourly means to match

the SCM hourly temporal resolution although their spa-

tial resolutions are different. However, as demonstrated

in the Xi et al. (2010) study and supported in this one,

cloud fraction (CF) is independent of temporal reso-

lution and spatial scale. Long-term CFs derived from
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different temporal resolutions of surface observations

can represent the areal CFs averaged from different

GOES grid boxes provided there are enough samples

and that clouds occur with equal frequency throughout

the domain of interest.

a. Surface observations

The Department of Energy (DOE) ARM 35-GHz

Millimeter Wavelength Cloud Radar (MMCR) has a

minimum detectable reflectivity factor (Z) of 255 dBZ at

1 km and 235 dBZ at 10 km (Moran et al. 1998). The

MMCR operates at a wavelength of 8 mm in a vertically

pointing mode and provides continuous profiles of radar

reflectivity from hydrometeors moving through the radar

field of view (FOV), allowing the identification of clear

and cloudy conditions. The beamwidth is 0.28, which re-

sults in a horizontal resolution of ;40 m at 12 km AGL.

Cloud-top height (Htop) is derived from MMCR reflec-

tivity profiles, with an uncertainty of 90 m. The lowest

cloud-base height (Hbase) is derived from a composite of

Belfort laser ceilometer, Micropulse lidar (MPL), and

MMCR data (Clothiaux et al. 2000). Inclusion of the lidar

allows for the filtering of insects, which produce a signif-

icant reflectivity during the spring and summer seasons

over the ARM SGP site. Another source of error in the

cloud radar observations is attenuation during heavy pre-

cipitation events, which leads to underestimated cloud-top

heights. To mitigate this issue, only times are considered

when MPL and MMCR cloud-base estimates are avail-

able during dry or lightly precipitating periods. This is

expected to cause a negligible amount of negative bias

to cloud fractions derived for all levels; only 0.4% of all

5-min samples were filtered out for this dataset.

The cloud fraction (CF), derived from the upward-

looking narrow FOV radar–lidar pair of measurements,

is simply the percentage of returns that are cloudy within

a specified sampling time period, that is, the ratio of the

number of 5-min samples when clouds were detected to

the total number of samples when both radar and lidar–

ceilometer instruments were working.

b. Satellite observations

The satellite cloud products (Minnis et al. 2001) were

retrieved using algorithms developed for the NASA

Clouds and the Earth’s Radiant Energy System project.

Cloud properties were retrieved from half-hourly, 4-km

0.65-, 3.9-, 10.8- (infrared, IR), and 12.0-mm radiances

taken by GOES-8. Cloudy pixels were identified using

an adaptation of the method described by Minnis et al.

(2008). The visible infrared solar-infrared split-window

technique (VISST) was applied during daytime (solar

zenith angle ,828) and the solar-infrared infrared split-

window technique (SIST) was used at night (solar zenith

angle .828) to derive cloud properties for those pixels

(Minnis et al. 2010b, manuscript submitted to IEEE

Trans. Geosci. Remote Sens.). The areal fraction of clouds

(or the amount when present, AWP) is the ratio of the

number of pixels classified as cloudy to the total number

of pixels within a specified area (0.58 3 0.58 in this

study). The primary technique for determining the ef-

fective cloud height (Heff) is to estimate the effective cloud

temperature (Teff) based on the 10.8-mm radiance ad-

justed to account for cloud semitransparency first, and

then to define Heff as the lowest altitude having Teff

from a vertical temperature profile.

The profile is constructed in three parts. The Rapid

Update Cycle (RUC) numerical weather analysis model

(Benjamin et al. 2004) profile is used for pressures p ,

500 hPa. The profile for p . 700 hPa is specified using

a 27.1 K km21 lapse rate anchored to the 24-h running

mean surface temperature from the RUC, while a line-

arly weighted blend of the RUC and lapse rate is used

for intermediate pressures. Dong et al. (2008) demon-

strated that the lapse rate approach is more reliable for

assigning cloud-top height from Teff for boundary layer

clouds than using the soundings from either sparse radio-

sonde measurements or numerical weather analyses. This

study uses the gridded layer-averaged GOES-8 AWPs

(Palikonda et al. 2006; data available online at http://www-

angler.larc.nasa.gov/). According to the retrieved Heff, the

GOES-derived clouds can be classified as low (,2 km),

middle (2–6 km), and high (.6 km) clouds. Total cloud

coverage is simply the sum of the low, middle, and high

AWPs determined from the GOES data.

c. NASA GISS SCM

The model analysis in this paper uses an archived run

of the NASA GISS SCM that is identical to the one

described in Del Genio et al. (2005a,b). The model is

based on the SI2000 version of the GCM, but with cloud

and convection physics updates described in Del Genio

et al. (2005a). The SCM has 35 vertical layers and an

implied horizontal resolution of 28 3 2.58, corresponding

to a grid box of approximately 220 km square at the

SGP. The continuous forcing driving this SCM run uses

constrained variable analysis with RUC-2 hourly ana-

lyses as the background field (Zhang et al. 2001; Xie et al.

2004). These hourly analyses are constrained by ARM

surface and GOES-8 satellite observations to balance

observed mass, momentum, heat, and moisture budgets

within the column. The forcing represents a circular area

approximately 180 km in radius from the central facility

at ARM SGP. This is approximately 2.2 times that of the
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implied resolution. The model is run hourly from the

observed advective temperature and moisture tenden-

cies, and is reinitialized at the beginning of each day to

remove climatic drift (Del Genio et al. 2005a).

The SCM predicts cloud water but uses a RH-based

scheme to diagnose the large-scale cloud fraction (Sundqvist

et al. 1989; Del Genio et al. 1996), which requires a

tunable threshold relative humidity parameter, U00.

Commonly set around 60%, stratiform clouds are not

allowed to occur below this value. Above this threshold,

cloud amount (fraction) is assumed to increase with

grid-box mean RH. The U00 is held constant globally

and vertically, and only varies (relative to saturation

over liquid water) when temperatures are below 2358C

to account for the differences between saturation vapor

pressure over ice rather water. For this reason and also

because the convective scheme separately diagnoses a

convective cloud cover, the SCM can occasionally create

clouds at values below the prescribed threshold (Del

Genio et al. 1996). The convective scheme uses mass flux

and is closed by moving enough mass to neutralize

cloud-base instability (Del Genio and Yao 1993). This

scheme allows for up to two convective cloud tops (such

as cumulus and cumulonimbus) and cirrus anvils by de-

training water vapor condensate from the convective

scheme into the grid box, where the subsequent evo-

lution is handled by the stratiform scheme. SCM cloud

fractions are diagnosed with an International Satellite

Cloud Climatology Project (ISCCP) simulator that uses

a random-maximum assumption for cloud overlap (Klein

and Jakob 1999).

d. NARR

The National Centers for Environmental Prediction

(NCEP) North American Regional Reanalysis (NARR)

(Mesinger et al. 2006) is a long-term (1979–2007) cli-

mate dataset with 3-h temporal, 32-km horizontal, and

45-layer vertical resolutions over the North American

domain. It contains outputs of many atmospheric variables

and fluxes and is nicely suited for diagnosis of synoptic and

mesoscale conditions over the ARM SGP site. NARR

uses the operational NCEP Eta Model and its three-

dimensional variational data assimilation (3DVAR) tech-

nique on a wide variety of observation platforms.

3. Evaluation of the NASA GISS SCM simulations

a. Methodology

Although the ARM radar–lidar observations provide

the most reliable vertical distributions for verifying the

GCM simulations, large-scale satellite data are critical

for evaluating GCM simulated spatial distributions of

clouds because they provide a means to account for the

scale differences between the SCM and surface site. Com-

parisons between the ground- and satellite-based observa-

tions must be conducted carefully because of significant

spatial and temporal differences between the two dif-

ferent observing platforms. Xi et al. (2010) have shown

that there is excellent agreement in monthly mean CFs

determined from 10 years of surface and GOES data.

The CF is independent of temporal resolution and spa-

tial scales, at least up to the size of a 2.58 grid box,

providing there are enough samples. Cloud frequency

of occurrence increases and AWP decreases with in-

creasing averaging time and spatial scale.

The temporal, spatial, and vertical resolutions of the

surface radar–lidar and GOES observations and SCM

simulations are listed in Table 1. To have the same tem-

poral resolution for the three datasets, both surface and

GOES datasets have been averaged into hourly means to

match the SCM hourly outputs. Since GOES can pro-

vide only three levels (low, middle, and high) of clouds,

both surface (90-m resolution) and SCM (;25-hPa res-

olution) vertical distributions of clouds have been binned

into those three levels to make a reasonable comparison.

Although this definition is different from the more widely

used ISSCP definition of cloud heights (high: ,440 hPa,

middle: 440–680 hPa, and low: .680 hPa), the differ-

ences between the two definitions are minimal for most

calculations of CF. For spatial resolution, the 0.58 3 0.58

grid box of the GOES observations has been extended

into a 28 3 2.58 grid box to match the SCM domain.

Figure 1 shows an enlarged 2.58 grid box, including the

percentages of the area from each 0.58 grid box.

Satellite observations may include several error sour-

ces that can significantly impact the derived AWP. In

particular, observational noise or retrieval errors can

lead to positively biased cloud frequencies for the 0.58

grid box because more clouds occur for very small

TABLE 1. Resolutions of the various datasets used in this publication.

Dataset Temporal Areal Height

ARM SGP MMCR 5 min ,60 m (0.28 beam) 90 m

GOES VISST ;15–30 min 0.58 3 0.58 3 levels

NASA GISS SCM 1 h 2.08 3 2.58 35 levels, ;25 mb

NARR reanalysis 3 h 0.38 3 0.38 29 levels, ;25 mb

ARM continuous forcing 1 h 180-km radius 37 levels, ;25 mb
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AWPs (,5%). Figure 2a illustrates the hit rate (fraction

of hours during which satellite and radar observations

agree) as a function of the instantaneous GOES AWP

threshold used here to discriminate between cloudy and

clear scenes. The impact of noise or retrieval errors is

easily seen for low clouds where their hit rate increases

to a maximum at ;10% AWP and then is asymptotic to

a hit rate of 0.8. This in turn impacts the total cloud hit

rate and suggests that for the best agreement between

radar and satellite observations, a threshold AWP must

be set to discriminate between cloudy and clear scenes

on an hour-to-hour basis. Other than a minimum below

FIG. 1. (top) Domain for this study. The thick box is the 28 3 2.58 SCM domain centered on

the ARM SGP CF site denoted by the star. The finer grid represents the 0.58 3 0.58 GOES

cloud product used in this study. (bottom) An enlarged 28 3 2.58 grid box that includes the

percentages of area from each 0.58 box that contributed to the 28 3 2.58 GOES average.
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2%, the hit rate slowly decreases for high clouds, which

indicates that setting a threshold too high would arbi-

trarily classify correct retrievals of clouds by the satellite

as clear. Except for optically thin cirrus, satellites should

detect most high clouds. Figure 2b demonstrates the

impact of the prescribed AWP thresholds on the GOES-

derived CF. Small AWP thresholds alter the derived cloud

fractions by a negligible amount (less than 1%). To filter

out GOES observational noise and/or retrieval errors and

to keep more cloud samples within the SCM domain,

a threshold of 5% GOES AWP was used to discriminate

cloudy ($5%) and clear (,5%) scenes in this study.

To further investigate the 5% threshold, consider Fig. 3,

which illustrates the frequencies of GOES-observed (be-

fore applying the 5% threshold) and SCM-simulated

AWPs. The distributions of the GOES AWP is charac-

terized by being bimodal for high clouds and exponen-

tially decreasing for the low- and midlevel clouds. Note

that the AWPs within the first bin of all three levels are

less than 5% and have been filtered out in this study.

Even if some of these scenes are realistic, the radiative

impact of such a small cloud coverage is probably minimal

on climatic scales. Despite the large peaks in the first bin

in Fig. 3, the distributions are consistent with the Zhang

(2003) study, which explored GOES AWP distributions

over a 9.58 3 13.58 area centered on the ARM SGP

during a summer month. Modeled three-level cloud

fractions peak at large AWPs (.85%), while others are

nearly equally distributed from 5% to 85%. This is most

likely caused internally within the SCM cloud param-

eterization scheme when volumetric cloud fraction is

converted into the horizontal scale.

b. Cloud fraction and frequency

For the GOES results, the cloudy frequency of occur-

rence (FREQ) is taken to be 0 for AWP , 5% and 1 when

AWP $ 5%. The monthly averaged AWP is the average

of all hourly AWPs (.5%) and represents the averaged

cloud amount when clouds are present. The average

FREQ (probability of cloud occurrence) is the ratio of the

number of times AWP . 5% to the total number of sat-

ellite observations during that month. Finally, the monthly

mean CF (or coverage/amount), following Warren et al.

(1984) and Hogan et al. (2001), is defined as the product

FIG. 2. Dependence of (a) hit rate and (b) cloud fraction on the AWP threshold for 0.58 3 0.58

satellite observations. An AWP is used to discriminate cloudy ($5%) and clear scenes (,5%)

in this study. Dashed lines in (b) are the radar–lidar observed cloud fractions with the relevant

layer indicated by the symbol along the right axis.
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of the averaged instantaneous AWP and FREQ. This is

equivalent to the CF derived by the radar–lidar observa-

tions if clouds occur uniformly over the domain.

1) DIURNAL VARIATION OF CLOUD FRACTION

The diurnal variations of hourly mean total and three-

level CFs are illustrated in Fig. 4. The diurnal cycles are

plotted in UTC (SGP local time 5 UTC 2 6 h) because

the SCM was reinitiated at 0000 UTC every day with no

spinup period. For surface observations, diurnal varia-

tions primarily occur for low clouds, which are typically

subject to mesoscale or microscale forcing with the

sunrise/sunset. There are more low-level clouds in the

morning than during the afternoon. Very little variabil-

ity occurs for clouds above 6 km that are more often tied

to large-scale forcing independent of the diurnal cycle.

Other than anvil cirrus clouds due to afternoon/evening

thunderstorms, high-level clouds are often associated

with the large-scale forcing, such as ascent with baro-

clinic waves.

For GOES-derived CFs, there is no strong diurnal

variation for total clouds, but there is a significant drop

for high clouds and an increase in both low and middle

clouds around sunrise (;1200–1300 UTC in Fig. 4). This

is primarily caused by the effect of multilayered clouds

on the different retrieval algorithms used for day and

night. The increased low- and midlevel CF during daytime

is mainly due to the fact that high, thin cirrus over low

clouds only slightly diminishes the IR brightness tem-

perature TIR, but the visible channel indicates that the

cloud is optically thick. The net result is that the VISST

assumes that the Teff is essentially the same as TIR. Thus,

the VISST retrievals for thin-over-thick multilayered cloud

systems yield a low- or midlevel cloud depending on the

altitude of the lower cloud and the optical thickness of

the upper-level cloud. If the upper-level cloud has an

optical depth greater than ;3 or so, the cloud is inter-

preted as a high cloud and the lower cloud is undetected.

Even in single-layered cirrus cases, the cloud height is

underestimated (Smith et al. 2008) because the cirrus

optical depth is overestimated (Min et al. 2004).

At night, however, the SIST is relatively insensitive to

the presence of a low-level cloud underneath a thin high

cloud because the surface and low-cloud temperatures

typically differ by only a few degrees. Thus, the upper-

level cloud is detected as being semitransparent and Teff

differs significantly from TIR and a relatively accurate

high-cloud altitude results for both single (Smith et al.

2008) and multilayered clouds (Xi et al. 2010). The low

clouds underneath the cirrus are not detected. These

algorithmic effects result in the high-cloud CF decreasing

from nighttime to daytime, which corresponds to an ap-

parent increase for low- and midlevel clouds. The low- and

midlevel CFs are always less than the values from the

radar because of the screening effect of the high clouds.

The SCM simulated clouds monotonically increase

from 0000 UTC to early morning (;1200 UTC) for total

and all three-level clouds, as shown in Fig. 4. The day-

time (1200–2400 UTC) minus nighttime (0000–1200 UTC)

CF differences vary by 28%–37%, depending on the level.

Although other issues cannot be completely ruled out,

the culprit for this steady increase in CF is mainly due

to the 0000 UTC daily initialization for the model. As

might be expected, this model spinup time (;12 h as

shown in Fig. 4) would introduce a negative bias to all

cloud fraction calculations. Therefore, all CFs derived

from surface, GOES, and SCM datasets are based only

upon the 1200–2400 UTC time period in this study.

2) SEASONAL VARIATION OF CLOUD FRACTION

AND FREQUENCY

The monthly variations of total, high, middle, and low

cloud fractions and frequencies derived from surface

FIG. 3. Frequency distributions of AWP for (a) high, (b) middle,

and (c) low clouds derived from GOES observations (black, before

applying a threshold of 5%) and SCM simulations (gray).
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radar–lidar, 0.58 and 2.58 grid boxes of GOES observa-

tions, and SCM simulations at the SGP site during the

3-yr period are illustrated in Fig. 5. Their corresponding

annual means are summarized in Table 2. Both surface

and GOES-derived total CFs agree very well in the

general trend and magnitude, with almost identical an-

nual means. They both peak during the January–March

period, have a second peak in June, followed by a sig-

nificant drop into July, and increase again from summer

to winter. The monthly variations of the three-level CFs

basically follow the total CF trend with minor variations.

Although the GOES-derived high CF is less than that

from the surface, the high-cloud frequency agrees well

with surface observations suggesting that at least part

of the high-cloud cover is correctly identified when-

ever high clouds occur during the daytime. Middle and

low CFs are less than the surface observations throughout

the year except for the July–August period. This is un-

derstandable because some of the middle and low clouds

are masked by upper-level clouds. The fact that some of

the low and midlevel clouds are actually misidentified

high clouds, as discussed above, is reinforced by their

greater frequencies of occurrence as seen by the satel-

lite. Although these comparisons are based on a 3-yr

dataset, it is concluded that they are typical because the

seasonal variations of clouds in this study are similar to

other studies that used longer time series (Dong et al.

2006; Xi et al. 2010).

Despite being consistently less than observations, the

monthly variations of SCM-simulated total and three-

level clouds undergo seasonal changes that are some-

what similar to those observed from the surface and

satellite with one exception. The SCM midlevel CF

maximum is several months out of phase with the others,

but still corresponds with a local maximum in the ob-

servations. As seen in both Figs. 4 and 5, the SCM sim-

ulates significantly fewer clouds overall (;10%) than

detected by the observations. Investigation of individual

FIG. 4. Hourly mean cloud fraction for (a) total and (b) high-, (c) middle-, and (d) low-level

clouds derived from the surface radar–lidar, 0.58 3 0.58 grid box of GOES observations, and

SCM simulations (from the ISSCP simulator with the random-maximum assumption of cloud

overlap) at ARM SGP, 1999–2001.
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layers reveals that the SCM underestimated high clouds

but simulated most of the middle and low clouds com-

pared to the surface and GOES observations.

The monthly variations of cloud frequencies are nearly

the same as their CF counterparts but with relatively

large values. As expected, the observed cloud frequencies

are greater for the large grid box (2.58) than for the small

grid box (0.58) and ARM surface observations; that is,

the cloud frequencies increase with larger spatial scales.

For high clouds, the 0.58 grid box of GOES- and radar-

observed cloud frequencies are nearly equivalent, which

suggests that on the order of an hour radar observations

are a good approximation for a 0.58 grid box of satellite

observations. The SCM simulated cloud frequencies are

lower than the observed ones except for low clouds. For

high clouds, the SCM frequency is nearly the same as its

CF (19% versus 15%), which indicates that the model

simulated either clear skies or scenes with large AWPs.

This argument is also supported by Fig. 3a.

Table 2 summarizes the 3-yr-averaged cloud fractions

and frequencies for total and three-level clouds. The per-

centages of surface and GOES observations and SCM

simulations used are 84%, 93%, and 100% of all possible

data during the 3-yr period, respectively. As listed in

Table 2, the GOES-derived total CFs from both 0.58 and

2.58 grid boxes are in excellent agreement with surface ob-

servations, while for individual cloud layers the limitation

TABLE 2. Averaged cloud fraction (CF) and frequency of oc-

currence (FREQ) from observations and model simulations during

the period 1999–2001. All numbers are given in percentages.

CF/FREQ

Radar–lidar SAT (0.58) SAT (2.58) SCM (2.58)

Total 44/57 46/62 44/74 37/48

High 30/42 21/36 19/46 15/19

Middle 20/30 16/38 14/51 17/24

Low 20/29 14/35 12/45 24/40

FIG. 5. (left) Monthly mean cloud fraction and (right) frequency of occurrence for total and high-, middle-, and low-level clouds

derived from surface radar–lidar and 0.58 3 0.58 and 28 3 2.58grid boxes of GOES observations and SCM simulations at ARM SGP,

1999–2001.
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of GOES satellite observations is apparent. All three

individual layers of CF are less than the surface results.

This discrepancy can be explained as follows: 1) the dif-

ficulty of cloud-base detection by passive sensing satel-

lites, 2) missed or underestimated Heff for optically thin

cirrus clouds, 3) missed low-level clouds when optically

thick cloud layers are present above, and 4) the limi-

tation of nighttime retrievals without visible channels.

Despite the difficulties in detecting these lower clouds,

the good agreement of the total and high cloud categories

for satellite and radar observations provides strong evi-

dence that the long-term observations of CF at the ARM

SGP site are representative of a large grid box of satellite

observations. It is expected that the 0.58 GOES-derived

CFs should be more representative of the surface-

retrieved CFs than the larger-scale averages. Thus, since

the total CF for the smaller box is 2% greater than that

for the 2.58 box, it can be assumed that differences in

cloud cover less than ;2% between the large-scale SCM

and the surface site are insignificant.

3) VERTICAL AND MONTHLY DISTRIBUTION OF

CLOUD FRACTIONS

To evaluate the vertical and monthly distribution of

SCM simulated clouds, ARM MMCR data were binned

into the same vertical resolution of the model (;25 hPa).

Figure 6 shows the monthly mean time–height series

of cloud fractions derived from ARM MMCR obser-

vations and simulated by the GISS SCM over the ARM

SGP, as well as their differences during the 3-yr period.

The observed cloud fraction has a bimodal distribution

with a higher peak at ;300 hPa and a lower one near the

top of the boundary layer at ;850 hPa. The largest cloud

fractions occur during the late winter and early spring

seasons when baroclinic wave activity is common over the

ARM SGP site. High-cloud fraction also varies some-

what with the fall and rise of the tropopause heights by

season due to the thermal thickness of the atmosphere.

The simulated CFs in Fig. 6b differ substantially from

the observed values. In addition to the aforementioned

lack of high clouds and excess of low clouds, several

specific seasonal errors exist: 1) the observed peak at

300 hPa during late winter is missing in the SCM and 2)

the overproduction of boundary layer clouds is most

prominent in the lowest couple of model layers during

late winter and early spring with values of 5%–10% over

the observed CF. In fact, if these layers were ignored, the

SCM would have a negative bias for clouds near the top of

the PBL. Given that the model uses a stratiform scheme

that is based on grid-box mean RH, this is consistent with

time periods of high RH in the boundary layer.

The time–height series of modeled cloud fractions in

Fig. 6 raises the following question: are the consistent

differences between the MMCR and SCM-simulated

clouds caused by the model cloud parameterizations, by

clouds that are forced on a scale irresolvable by the

model and its forcing, or by errors in the ARM contin-

uous forcing? The cloud parameterizations within the

NASA GISS SCM use large-scale variables, such as RH

and cumulus mass flux, to predict clouds. Changes in the

model–observation cloud with season and height sug-

gest that either the relationships of cloud fraction with

these parameters vary seasonally or advective forcing is

variable by season. High clouds, for example, are un-

derestimated regardless of season, and very few are

produced during the summer.

One possible cause of a consistent negative bias for

clouds is the lack of consideration for condensate ad-

vection in SCMs. This is a difficult problem to address

because observations of condensate advection are lim-

ited. While advection is most important for high clouds,

which are the principal deficiency for the model simu-

lation in this paper, it is also true that ice sedimentation

limits this problem to an extent. Klein and Jakob (1999)

performed a sensitivity study for the European Centre

for Medium-Range Weather Forecasts related to this

problem and found that the inclusion of advection had

minimal impact (3%) on the simulation of cloud fraction.

Given that this percentage is much smaller than the biases

for the high-cloud fraction in this paper, it is concluded that

condensate advection cannot be the predominant issue.

This bias could be explained by a variety of other

mechanisms, however. Climatologically, Oklahoma is

dominated by large-scale ridging during summer. With

plentiful subsidence and the lack of baroclinic waves to

transport moisture to the upper atmosphere, its RH is

lower than during other seasons. Considering that the

model uses RH to simulate stratiform clouds, it is not

difficult to fathom less cloud cover being simulated during

the summer months. Another plausible explanation may

be that the model cannot simulate an adequate amount of

subgrid-scale convection, thereby generating fewer cirrus

anvils from convective clouds during the summer. The

consistent negative bias of high clouds, however, suggests

that an issue exists regardless of cloud forcing. To partially

answer the questions and test the various hypotheses, the

association of observed and modeled clouds with NARR-

derived synoptic patterns and ARM continuous forcing is

explored in the following sections.

4. Association of the observed and modeled clouds
with large-scale synoptic pattern

To match the temporal resolution of the NARR data-

set, the radar observations and SCM simulations were

reduced to 3-hourly time steps for this portion of the

study. For simplicity, each time step is classified as either
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clear or cloudy, and cloud fraction is not considered.

To best represent the upper-level synoptic pattern, the

500-hPa geopotential height and vertical motion (v , 0

for upward and v . 0 for downward) and 300-hPa RH

were selected to study high clouds. For low clouds, mean

sea level pressure (MSLP), 500-hPa v, and 925-hPa RH

were considered. These three parameters were then aver-

aged for the following conditions: 1) periods when clouds

FIG. 6. Monthly mean cloud fraction during the period from 1999 to 2001 derived from

(a) surface radar–lidar at ARM SGP and (b) the NASA GISS SCM model simulation and (c) the

difference between the two mean cloud fractions.
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were both observed and simulated (hit) and 2) clouds were

observed but not simulated (miss). For brevity, these

are referred to as hits and misses, although they are not

quite the same as the more commonly used terminology

that includes correct and incorrect simulations of null

forecasts (no cloud).

a. High clouds

Figure 7 illustrates the 500-hPa geopotential height and

vertical velocity and 300-hPa relative humidity anomalies

(relative to the 3-yr period) for both the modeled and

missed high clouds over the SGP during the 3-yr pe-

riod. The 500-hPa geopotential height field for model

hits (Fig. 7a) is characterized by a dipole pattern with

negative (positive) anomalies from climatology west

(east) of the SGP. This is indicative of a trough upstream

of the site for model hits. The maximum negative geo-

potential height anomalies are approximately 20 m be-

low the climatological geopotential height of observed

high clouds and are within the 99% significance level.

FIG. 7. The 500-hPa geopotential height, vertical velocity, and 300-hPa RH anomalies for time periods of correctly simulated (left) high

cloud cover and (right) missed high cloud cover. The thicker black lines represent the 99% significance level.

5186 J O U R N A L O F C L I M A T E VOLUME 23



Model hits are also associated with strong upward mo-

tion in the v field (Fig. 7b) and positive relative humidity

anomalies (Fig. 7c). The entire model domain is easily

within the 99% significance level with a peak vertical

motion anomaly of 20.08 Pa s21 and an RH anomaly

of 5%.

Model misses are characterized by a reversal in the

NARR fields, which nearly mirrors the synoptic pattern

for model hits. Geopotential height anomalies are con-

sistent (Fig. 7d) with a ridge to the west of the ARM

SGP. Although this pattern is statistically significant, the

amplitude (15 m) is less than that of the trough. Like-

wise, model misses are associated with sinking motion

and drier conditions. These fields, while significant at the

99% level, have magnitudes of 0.06 Pa s21 for v and

24% for RH, less than those associated with the trough.

These results are consistent with the hypothesis that

the model is primarily producing high clouds during

synoptically evident events. High clouds are typically

formed when a trough lies west of ARM SGP. From

quasigeostrophic theory, one would expect rising mo-

tion to occur east of the trough axis and, with this rising

motion, increased moisture transport to the upper tro-

posphere. Model misses, however, occur when clouds

are associated with a large-scale ridge. Associated with

this ridge is sinking motion and negative RH anomalies.

At least some of the missed high clouds can be explained

through this analysis. When there are few baroclinic

waves, simulated high clouds occur infrequently. This

normally occurs over the SGP region during the summer

months when the polar jet is shifted farther north. High

clouds still occur frequently during the summer, however,

which indicates these might occur due to subgrid-scale

forcing, such as local thunderstorms. This argument is

reinforced by the values in Table 3, which presents the

percentage of high-cloud fraction that occurs during the

periods of 500-hPa subsidence. Approximately one-third

of the clouds satisfy this condition year round with the

highest percentage (47%) occurring during the summer

season. The percentages of modeled high clouds, how-

ever, are only ;20%–25% (compared to the observed

32%–47% CF). By the very nature of the forcing that is

constrained by precipitation, high clouds associated with

convective cores should be associated with rising motion

in the column. High-cloud cover during time periods

of neutral and sinking motion must be simulated by the

stratiform parameterization. The low model percent-

ages compared to observations suggest that the stratiform

scheme is suspect in generating enough high-cloud cover.

Is it possible for this parameterization within the SCM to

accurately simulate a realistic amount of high cloud?

b. Low clouds

The relationships of low clouds with NARR fields are

given in Fig. 8. Model hits are characterized by lower

MSLP (Fig. 8a), weak rising motion (Fig. 8b), and positive

RH anomalies (Fig. 8c). Although the patterns are similar

to those for high clouds and significant at the 99% level,

the magnitudes of these fields are much lower: 1 hPa,

20.01 Pa s21, and 4%. The weak relationship to 500-hPa

vertical motion can be explained by low clouds being

controlled by PBL processes. The weak relationship of low

clouds with RH is somewhat surprising, however.

Anomalies for model misses are opposite to those for

hits, but are much greater in magnitude. Values over the

ARM SGP are 3 hPa for MSLP, 0.08 Pa s21 for omega,

and 214% for RH. While their patterns are asymmetric

compared to those of high clouds, the most striking dif-

ference is the large difference in magnitude. To explain

this difference and to also answer the questions raised for

high clouds, it is necessary to examine the seasonal and

vertical variations of clouds related to the RH and omega

fields from both ARM forcing and the NARR datasets.

5. Relationships between clouds and large-scale
parameters

In section 4, it was found that most of the missed clouds

occurred during quiescent conditions with either neutral

or sinking vertical motions and lower humidity values.

Model biases may be due to the frequency of clouds that

occur from subgrid-scale variability, the current stratiform

RH threshold of U00 5 60% being unrepresentative of

conditions at SGP, or errors in the forcing itself.

To answer these questions, PDFs are calculated for

the following two relationships: (i) the probability of a

given value of RH/ v occurring for cloudy scenes and

(ii) the probability of cloud occurrence for a given value

of RH/v. Observed CF from the ARM SGP site is com-

pared with area averages from ARM forcing and NARR

at an equivalent resolution. Simulated clouds are com-

pared with values from the driving ARM forcing.

a. Relationship of RH to high and low clouds

The probabilities of a given RH occurring for observed

and modeled high cloud scenes are illustrated in Fig. 9a.

TABLE 3. Percentages of observed and modeled high clouds

occurring during stratiform conditions (omega $ 0) at the 500-hPa

level.

Season

Year DJF MAM JJA SON

OBS (%) 36 33 32 47 36

SCM (%) 21 19 23 25 23
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The observed high clouds have near-Gaussian distribu-

tions with RH peaks occurring near 50% and 40% for

ARM and NARR, respectively. The NARR distribution

is narrower in width with higher probabilities than ARM.

The model’s peak is at ;65%–70% RH for both total

and stratiform cloud fractions. This is a function of the

stratiform cloud parameterizations used in the model

that limits cloud development below U00. While not shown,

the probability distribution functions of RH for all clear

and cloudy scenes show that the SCM produces higher

RH and fewer low RH values than indicated by the

continuous forcing and NARR at the SGP, suggesting

either a shortcoming in the observations or an issue with

the stratiform parameterization. Together, the tendency

for high RH values and the parameterization specification

that restricts stratiform cloud to high RH cause the prob-

ability of high cloud to increase nearly exponentially with

RH, a feature not seen in the data (Fig. 9b).

FIG. 8. MSLP, 500-hPa vertical velocity, and 925-hPa RH anomalies for time periods of (left) correctly simulated low cloud cover and

(right) missed low cloud cover. The thicker black lines represent the 99% significance level.
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For low clouds, several differences exist. The proba-

bilities of RH for observed cloudy scenes (Fig. 9c) have

gammalike distributions with peaks at 75%–85% RH

and a sharp dropoff toward RH 5 100%. The model

histograms have similar shapes to the observed but

with higher peak values and at a slightly higher RH

than NARR. The PDF for RH occurrence (not

shown) also has too many high RH values, as for high

clouds, but is otherwise similar in shape to the ob-

servations. Unlike high clouds, the probability of

observed low clouds occurring at high RH is much

lower with only a 60% probability at RH values of

95%–100% (Fig. 9d). For the SCM, the cloud proba-

bility increases sharply with RH . 60%, consistent

with the specified U00. Because the majority of low

clouds occur at high RH, there is little difference for

the periods when clouds are both observed and simu-

lated. Model misses, on the other hand, occur frequently

when low clouds occur at RH values well below the

threshold.

b. Relationship of v to high and low clouds

As was done for RH, PDFs for v were also calculated

and are shown in Fig. 10. Results for high and low clouds

are similar in many regards. Compared to the ARM

forcing, the NARR distribution is positively skewed

with a noticeable tail at larger values of sinking motion

between 5 and 20 mb h21. Reinforcing the results from

section 4, the model has a negative bias compared to

both ARM and NARR, producing the majority of its

high clouds during times of rising motion (negative v).

Probabilities of high cloud in Fig. 10b drop significantly

when vertical motion changes from upward to down-

ward. While the PDFs derived from ARM forcing and

NARR agree well for negative values of v, NARR is

asymptotic to a value ;10% higher than ARM. This

FIG. 9. Dependence of high and low cloud occurrences on RH (5% bins). Probabilitys of (a) RH for observed and simulated high cloud

scenes and (b) high cloud occurrence for a given RH. (c),(d) As in (a),(b) but for low clouds. Simulated clouds for total (black stars) and

stratiform (gray stars) are compared to values from ARM forcing, while observed clouds are compared to both ARM and NARR. Note

that data are only plotted for bins that contribute at least 0.05% to the total distribution.
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feature is also noticeable for low clouds to a lesser extent.

In the lower levels, the model predominantly produces

stratiform clouds; hence, the two distributions for total

and stratiform CF are nearly identical (Fig. 10c).

c. Discussion

The results from this section highlight the seasonal and

vertical variations of clouds related to RH and v. In the

lower troposphere, a RH threshold of U00 5 60% cap-

tures the majority of low clouds and leads toward an

overproduction (positive bias) of low clouds due to the

amount of clear scenes that occur at RH . 60% in the

lowest several model layers. For high clouds, many clouds

are observed well below the SCM stratiform RH thresh-

old U00. If the model can only produce high clouds during

the periods of upwelling motion or higher humidity in the

upper troposphere, it is easily understood why the SCM

has a negative bias for high clouds. The best balance oc-

curs in the midlevels where the modeled cloud fraction is

similar to both radar and satellite observations.

6. Summary and conclusions

The NASA GISS SCM simulated clouds over the ARM

SGP have been compared with combined radar–lidar

and satellite observations over the ARM SGP during

the period 1999–2001. To qualitatively and quantita-

tively investigate how well the observed and modeled

clouds were associated with large-scale synoptic pat-

terns and variables, the observed and modeled clouds

with ARM forcing and NARR data were explored.

Through an integrative analysis of observations, simu-

lations, and forcing/reanalysis datasets, the following

conclusions are reached:

1) The GOES-derived total CFs from both 0.58 and 2.58

grid boxes are in excellent agreement with surface

observations, which shows that ARM point observa-

tions can represent large areal observations on yearly

and even monthly time scales at a relatively low level

(;2%) of uncertainty at the ARM SGP. For indi-

vidual cloud layers, the GOES-derived CFs are less

FIG. 10. As in Fig. 9 but for v (5 mb h21 bins).
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than the surface observations because of cloud over-

lap issues and the limitations of detecting clouds us-

ing passive satellite observations. Compared with the

surface–GOES observations, the SCM simulates most

of the midlevel clouds, overestimates low clouds (4%,

in the lowest two layers), and underestimates total and

high clouds by 7% and 15%, respectively. The most

notable difference between observations and simu-

lations is the lack of modeled high clouds regardless

of season. There is no strong diurnal variation for

both surface and GOES-derived total clouds. A sig-

nificant drop for high clouds and a bump for both low

and middle clouds around sunrise (;1200–1300 UTC)

for GOES observations are mainly caused by the us-

age of two different retrieval algorithms for day and

night.

2) Investigation of NARR data for the modeled high

clouds reveals the model hit (missed) clouds occur

during a trough (ridge) upstream of the ARM SGP.

These synoptic patterns are associated with rising

(sinking) motion and positive (negative) RH anom-

alies. Modeled clouds are associated with the rising

motion that occurred over the east of the trough axis

and increased moisture transport to the upper tro-

posphere. The model misses, however, are associ-

ated with large-scale ridging, sinking motion, and

negative RH anomalies. At least part of the missed

high clouds can be explained through this analysis.

Fewer high clouds can be produced during the

periods when baroclinic wave activity is infrequent,

a condition that normally occurs over the SGP region

during summer months when the polar jet is shifted

farther north.

3) The probability distributions of RH occurrence dif-

fer for observed high- and low-cloud scenes. High

clouds have a Gaussian-like distribution with a peak

at ;40%–50% RH, whereas low clouds have a gam-

malike distribution with the highest cloud probability

occurring at RH between 75% and 85%. While the

distributions of observed and modeled low clouds are

mostly similar to each other, the modeled high cloud

distributions peak at greater RH values than the ob-

servations. The negative bias in the modeled high

clouds is mainly caused by the SCM RH threshold

because most observed clouds occur at RH values

below what was specified for this run (60%). Although

model results are qualitatively the same whether

they are compared to ARM forcing or NARR, dif-

ferences between these two datasets warrant further

investigation.

The results presented in this study only represent

clouds over a single continental area during the 3-yr

period. While the results study suggest some possible

directions for improvement, similar analyses and tests

need to be performed in other climate regimes, such as

arctic, tropical, and subtropical ocean regions, to see

whether the insights achieved are general or location

specific. A variety of other questions remain unresolved.

A large percentage of clouds over the ARM SGP are

forced at scales unresolved by the continuous forcing. In

particular, convection poses a significant challenge to

GCM modelers. How feasible is it for any SCM to di-

agnose such clouds in the absence of knowledge about

the forcing on smaller scales? It may be possible to

gather additional statistics on these clouds by incor-

porating precipitation radars over the SGP site to give

a complete picture about convective clouds, including

their core and stratiform regions. Other questions re-

lated to the cloud microphysical and optical properties

and their impact on the surface and TOA radiation

budget are also important. Until these questions are

explored in detail, it is impossible to understand the true

validity of the NASA GISS GCM/SCM and its cloud

parameterizations.
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